Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA.
Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
ChemMedChem. 2021 Mar 18;16(6):942-948. doi: 10.1002/cmdc.202000924. Epub 2020 Dec 10.
The COVID-19 pathogen, SARS-CoV-2, requires its main protease (SC2M ) to digest two of its translated long polypeptides to form a number of mature proteins that are essential for viral replication and pathogenesis. Inhibition of this vital proteolytic process is effective in preventing the virus from replicating in infected cells and therefore provides a potential COVID-19 treatment option. Guided by previous medicinal chemistry studies about SARS-CoV-1 main protease (SC1M ), we have designed and synthesized a series of SC2M inhibitors that contain β-(S-2-oxopyrrolidin-3-yl)-alaninal (Opal) for the formation of a reversible covalent bond with the SC2M active-site cysteine C145. All inhibitors display high potency with K values at or below 100 nM. The most potent compound, MPI3, has as a K value of 8.3 nM. Crystallographic analyses of SC2M bound to seven inhibitors indicated both formation of a covalent bond with C145 and structural rearrangement from the apoenzyme to accommodate the inhibitors. Virus inhibition assays revealed that several inhibitors have high potency in inhibiting the SARS-CoV-2-induced cytopathogenic effect in both Vero E6 and A549/ACE2 cells. Two inhibitors, MPI5 and MPI8, completely prevented the SARS-CoV-2-induced cytopathogenic effect in Vero E6 cells at 2.5-5 μM and A549/ACE2 cells at 0.16-0.31 μM. Their virus inhibition potency is much higher than that of some existing molecules that are under preclinical and clinical investigations for the treatment of COVID-19. Our study indicates that there is a large chemical space that needs to be explored for the development of SC2M inhibitors with ultra-high antiviral potency.
新型冠状病毒(SARS-CoV-2)病原体需要其主要蛋白酶(SC2M)来消化其两个翻译的长多肽,以形成许多成熟蛋白,这些蛋白对于病毒复制和发病机制至关重要。抑制这一重要的蛋白水解过程可有效阻止病毒在感染细胞中复制,因此为治疗 COVID-19 提供了一种潜在的选择。基于之前关于 SARS-CoV-1 主要蛋白酶(SC1M)的药物化学研究,我们设计并合成了一系列含有β-(S-2-氧代吡咯烷-3-基)-丙氨酸(Opal)的 SC2M 抑制剂,用于与 SC2M 活性部位半胱氨酸 C145 形成可逆的共价键。所有抑制剂均显示出高活性,K 值在 100 nM 或以下。最有效的化合物 MPI3 的 K 值为 8.3 nM。与七个抑制剂结合的 SC2M 的晶体结构分析表明,与 C145 形成了共价键,并且结构从无酶形式重排以适应抑制剂。病毒抑制试验表明,几种抑制剂在抑制 SARS-CoV-2 诱导的 Vero E6 和 A549/ACE2 细胞中的致病变效应方面具有高活性。两种抑制剂 MPI5 和 MPI8 在 2.5-5 μM 的 Vero E6 细胞中和 0.16-0.31 μM 的 A549/ACE2 细胞中完全阻止了 SARS-CoV-2 诱导的致病变效应。它们的病毒抑制活性远高于一些正在进行临床前和临床研究用于治疗 COVID-19 的现有分子。我们的研究表明,需要进一步探索具有超高抗病毒活性的 SC2M 抑制剂的广阔化学空间。