Suppr超能文献

一种快速获得多种高活性 SARS-CoV-2 主蛋白酶抑制剂的方法*。

A Quick Route to Multiple Highly Potent SARS-CoV-2 Main Protease Inhibitors*.

机构信息

Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA.

Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.

出版信息

ChemMedChem. 2021 Mar 18;16(6):942-948. doi: 10.1002/cmdc.202000924. Epub 2020 Dec 10.

Abstract

The COVID-19 pathogen, SARS-CoV-2, requires its main protease (SC2M ) to digest two of its translated long polypeptides to form a number of mature proteins that are essential for viral replication and pathogenesis. Inhibition of this vital proteolytic process is effective in preventing the virus from replicating in infected cells and therefore provides a potential COVID-19 treatment option. Guided by previous medicinal chemistry studies about SARS-CoV-1 main protease (SC1M ), we have designed and synthesized a series of SC2M inhibitors that contain β-(S-2-oxopyrrolidin-3-yl)-alaninal (Opal) for the formation of a reversible covalent bond with the SC2M active-site cysteine C145. All inhibitors display high potency with K values at or below 100 nM. The most potent compound, MPI3, has as a K value of 8.3 nM. Crystallographic analyses of SC2M bound to seven inhibitors indicated both formation of a covalent bond with C145 and structural rearrangement from the apoenzyme to accommodate the inhibitors. Virus inhibition assays revealed that several inhibitors have high potency in inhibiting the SARS-CoV-2-induced cytopathogenic effect in both Vero E6 and A549/ACE2 cells. Two inhibitors, MPI5 and MPI8, completely prevented the SARS-CoV-2-induced cytopathogenic effect in Vero E6 cells at 2.5-5 μM and A549/ACE2 cells at 0.16-0.31 μM. Their virus inhibition potency is much higher than that of some existing molecules that are under preclinical and clinical investigations for the treatment of COVID-19. Our study indicates that there is a large chemical space that needs to be explored for the development of SC2M inhibitors with ultra-high antiviral potency.

摘要

新型冠状病毒(SARS-CoV-2)病原体需要其主要蛋白酶(SC2M)来消化其两个翻译的长多肽,以形成许多成熟蛋白,这些蛋白对于病毒复制和发病机制至关重要。抑制这一重要的蛋白水解过程可有效阻止病毒在感染细胞中复制,因此为治疗 COVID-19 提供了一种潜在的选择。基于之前关于 SARS-CoV-1 主要蛋白酶(SC1M)的药物化学研究,我们设计并合成了一系列含有β-(S-2-氧代吡咯烷-3-基)-丙氨酸(Opal)的 SC2M 抑制剂,用于与 SC2M 活性部位半胱氨酸 C145 形成可逆的共价键。所有抑制剂均显示出高活性,K 值在 100 nM 或以下。最有效的化合物 MPI3 的 K 值为 8.3 nM。与七个抑制剂结合的 SC2M 的晶体结构分析表明,与 C145 形成了共价键,并且结构从无酶形式重排以适应抑制剂。病毒抑制试验表明,几种抑制剂在抑制 SARS-CoV-2 诱导的 Vero E6 和 A549/ACE2 细胞中的致病变效应方面具有高活性。两种抑制剂 MPI5 和 MPI8 在 2.5-5 μM 的 Vero E6 细胞中和 0.16-0.31 μM 的 A549/ACE2 细胞中完全阻止了 SARS-CoV-2 诱导的致病变效应。它们的病毒抑制活性远高于一些正在进行临床前和临床研究用于治疗 COVID-19 的现有分子。我们的研究表明,需要进一步探索具有超高抗病毒活性的 SC2M 抑制剂的广阔化学空间。

相似文献

1
A Quick Route to Multiple Highly Potent SARS-CoV-2 Main Protease Inhibitors*.
ChemMedChem. 2021 Mar 18;16(6):942-948. doi: 10.1002/cmdc.202000924. Epub 2020 Dec 10.
2
A Speedy Route to Multiple Highly Potent SARS-CoV-2 Main Protease Inhibitors.
bioRxiv. 2020 Jul 28:2020.07.28.223784. doi: 10.1101/2020.07.28.223784.
3
Discovery and Mechanism of SARS-CoV-2 Main Protease Inhibitors.
J Med Chem. 2022 Feb 24;65(4):2866-2879. doi: 10.1021/acs.jmedchem.1c00566. Epub 2021 Sep 27.
4
Structure-Guided Design of Potent Inhibitors of SARS-CoV-2 3CL Protease: Structural, Biochemical, and Cell-Based Studies.
J Med Chem. 2021 Dec 23;64(24):17846-17865. doi: 10.1021/acs.jmedchem.1c01037. Epub 2021 Dec 5.
5
MPI8 is Potent against SARS-CoV-2 by Inhibiting Dually and Selectively the SARS-CoV-2 Main Protease and the Host Cathepsin L.
ChemMedChem. 2022 Jan 5;17(1):e202100456. doi: 10.1002/cmdc.202100456. Epub 2021 Jul 29.
7
9
Ultralarge Virtual Screening Identifies SARS-CoV-2 Main Protease Inhibitors with Broad-Spectrum Activity against Coronaviruses.
J Am Chem Soc. 2022 Feb 23;144(7):2905-2920. doi: 10.1021/jacs.1c08402. Epub 2022 Feb 10.
10
Expedited Approach toward the Rational Design of Noncovalent SARS-CoV-2 Main Protease Inhibitors.
J Med Chem. 2022 Feb 24;65(4):2848-2865. doi: 10.1021/acs.jmedchem.1c00509. Epub 2021 Apr 23.

引用本文的文献

1
Computational and Experimental Study of the Conformational Variation of the Catalytic Residue His41 of the SARS-CoV-2 Main Protease.
J Phys Chem B. 2025 May 29;129(21):5198-5206. doi: 10.1021/acs.jpcb.5c01718. Epub 2025 May 19.
3
Exploring covalent inhibitors of SARS-CoV-2 main protease: from peptidomimetics to novel scaffolds.
J Enzyme Inhib Med Chem. 2025 Dec;40(1):2460045. doi: 10.1080/14756366.2025.2460045. Epub 2025 Feb 6.
5
Covalent Proximity Inducers.
Chem Rev. 2025 Jan 8;125(1):326-368. doi: 10.1021/acs.chemrev.4c00570. Epub 2024 Dec 18.
6
3-chymotrypsin-like protease in SARS-CoV-2.
Biosci Rep. 2024 Aug 28;44(8). doi: 10.1042/BSR20231395.
7
SARS-CoV-2 Main Protease Inhibitors That Leverage Unique Interactions with the Solvent Exposed S3 Site of the Enzyme.
ACS Med Chem Lett. 2024 May 20;15(6):950-957. doi: 10.1021/acsmedchemlett.4c00146. eCollection 2024 Jun 13.
8
Development of an active-site titrant for SARS-CoV-2 main protease as an indispensable tool for evaluating enzyme kinetics.
Acta Pharm Sin B. 2024 May;14(5):2349-2357. doi: 10.1016/j.apsb.2024.03.001. Epub 2024 Mar 6.
9
Discovery of First-in-Class PROTAC Degraders of SARS-CoV-2 Main Protease.
J Med Chem. 2024 Apr 25;67(8):6495-6507. doi: 10.1021/acs.jmedchem.3c02416. Epub 2024 Apr 12.
10
Azapeptides with unique covalent warheads as SARS-CoV-2 main protease inhibitors.
Antiviral Res. 2024 May;225:105874. doi: 10.1016/j.antiviral.2024.105874. Epub 2024 Mar 28.

本文引用的文献

1
2
Commentary: Origin and evolution of pathogenic coronaviruses.
Front Immunol. 2020 Apr 21;11:811. doi: 10.3389/fimmu.2020.00811. eCollection 2020.
3
Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease.
Science. 2020 Jun 19;368(6497):1331-1335. doi: 10.1126/science.abb4489. Epub 2020 Apr 22.
4
Genomic characterization of a novel SARS-CoV-2.
Gene Rep. 2020 Jun;19:100682. doi: 10.1016/j.genrep.2020.100682. Epub 2020 Apr 16.
5
Structure of M from SARS-CoV-2 and discovery of its inhibitors.
Nature. 2020 Jun;582(7811):289-293. doi: 10.1038/s41586-020-2223-y. Epub 2020 Apr 9.
6
Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors.
Science. 2020 Apr 24;368(6489):409-412. doi: 10.1126/science.abb3405. Epub 2020 Mar 20.
8
World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19).
Int J Surg. 2020 Apr;76:71-76. doi: 10.1016/j.ijsu.2020.02.034. Epub 2020 Feb 26.
9
Genetic diversity and evolution of SARS-CoV-2.
Infect Genet Evol. 2020 Jul;81:104260. doi: 10.1016/j.meegid.2020.104260. Epub 2020 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验