Suppr超能文献

2012 年至 2016 年住院患者诊断相关组诊断趋势及相关支付变化。

Trends in Diagnosis Related Groups for Inpatient Admissions and Associated Changes in Payment From 2012 to 2016.

机构信息

Center for Cardiovascular Analytics, Research and Data Science, Providence Heart Institute, Providence St. Joseph Health, Portland, Oregon.

Healthcare Delivery Innovation Center, Minneapolis Heart Institute and Minneapolis Heart Institute Foundation, Minneapolis, Minnesota.

出版信息

JAMA Netw Open. 2020 Dec 1;3(12):e2028470. doi: 10.1001/jamanetworkopen.2020.28470.

Abstract

IMPORTANCE

Hospitals are reimbursed based on Diagnosis Related Groups (DRGs), which are defined, in part, by patients having 1 or more complications or comorbidities within a given DRG family. Hospitals have made substantial investment in efforts to document these complications and comorbidities.

OBJECTIVE

To examine temporal trends in DRGs with a major complication or comorbidity, compare these findings with 2 alternative measures of disease severity, and estimate associated changes in payment.

DESIGN, SETTING, AND PARTICIPANTS: This retrospective cohort study used data from the all-payer National Inpatient Sample for admissions assigned to 1 of the top 20 reimbursed DRG families at US acute care hospitals from January 1, 2012, to December 31, 2016. Data were analyzed from July 10, 2018, to May 29, 2019.

EXPOSURES

Quarter year of hospitalization.

MAIN OUTCOMES AND MEASURES

The primary outcome was the proportion of DRGs with a major complication or comorbidity. Secondary outcomes were comorbidity scores, risk-adjusted mortality rates, and estimated payment. Changes in assigned DRGs, comorbidity scores, and risk-adjusted mortality rates were analyzed by linear regression. Payment changes were estimated for each DRG by calculating the Centers for Medicare & Medicaid Services weighted payment using 2012 and 2016 case mix and hospitalization counts.

RESULTS

Between 2012 and 2016, there were 62 167 976 hospitalizations for the 20 highest-reimbursed DRG families; the sample was 32.9% male and 66.8% White, with a median age of 57 years (interquartile range, 31-73 years). Within 15 of these DRG families (75%), the proportion of DRGs with a major complication or comorbidity increased significantly over time. Over the same period, comorbidity scores were largely stable, with a decrease in 6 DRG families (30%), no change in 10 (50%), and an increase in 4 (20%). Among 19 DRG families with a calculable mortality rate, the risk-adjusted mortality rate significantly decreased in 8 (42%), did not change in 9 (47%), and increased in 2 (11%). The observed DRG shifts were associated with at least $1.2 billion in increased payment.

CONCLUSIONS AND RELEVANCE

In this cohort study, between 2012 and 2016, the proportion of admissions assigned to a DRG with major complication or comorbidity increased for 15 of the top 20 reimbursed DRG families. This change was not accompanied by commensurate increases in disease severity but was associated with increased payment.

摘要

重要性

医院的报销是基于诊断相关组 (DRGs) 的,这些组部分是根据给定 DRG 家族中患者有 1 个或多个并发症或合并症来定义的。医院已经在记录这些并发症和合并症方面进行了大量投资。

目的

研究具有主要并发症或合并症的 DRG 的时间趋势,将这些发现与 2 种替代疾病严重程度衡量标准进行比较,并估计相关支付变化。

设计、设置和参与者:这项回顾性队列研究使用了来自美国急症医院所有支付者国家住院患者样本的数据,这些数据来自 2012 年 1 月 1 日至 2016 年 12 月 31 日期间归入前 20 个报销 DRG 家族之一的住院患者。数据于 2018 年 7 月 10 日至 2019 年 5 月 29 日进行分析。

暴露

住院的季度年份。

主要结果和措施

主要结果是具有主要并发症或合并症的 DRG 的比例。次要结果是合并症评分、风险调整死亡率和估计的支付。通过线性回归分析分配的 DRG、合并症评分和风险调整死亡率的变化。通过使用 2012 年和 2016 年病例组合和住院次数计算医疗保险和医疗补助服务中心加权支付,为每个 DRG 估计支付变化。

结果

在 2012 年至 2016 年间,20 个最高报销 DRG 家族中有 62167976 例住院治疗;样本中 32.9%为男性,66.8%为白人,中位年龄为 57 岁(四分位距,31-73 岁)。在这 15 个 DRG 家族中的 15 个家族(75%)中,具有主要并发症或合并症的 DRG 比例随时间显著增加。同期,合并症评分基本保持稳定,6 个 DRG 家族(30%)评分下降,10 个家族(50%)评分不变,4 个家族(20%)评分增加。在 19 个具有可计算死亡率的 DRG 家族中,8 个家族(42%)的风险调整死亡率显著下降,9 个家族(47%)不变,2 个家族(11%)增加。观察到的 DRG 转移与至少 12 亿美元的支付增加有关。

结论和相关性

在这项队列研究中,在 2012 年至 2016 年间,前 20 个报销 DRG 家族中有 15 个家族的主要并发症或合并症的住院患者比例增加。这种变化并没有伴随着疾病严重程度的相应增加,但与支付增加有关。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验