IEEE Trans Cybern. 2022 Jul;52(7):6857-6871. doi: 10.1109/TCYB.2020.3034792. Epub 2022 Jul 4.
While input or output-perturbation-based adversarial training techniques have been exploited to enhance the generalization capability of a variety of nonfuzzy and fuzzy classifiers by means of dynamic regularization, their performance may perhaps be very sensitive to some inappropriate adversarial samples. In order to avoid this weakness and simultaneously ensure enhanced generalization capability, this work attempts to explore a novel knowledge adversarial attack model for the zero-order Tagaki-Sugeno-Kang (TSK) fuzzy classifiers. The proposed model is motivated by exploiting the existence of special knowledge adversarial attacks from the perspective of the human-like thinking process when training an interpretable zero-order TSK fuzzy classifier. Without any direct use of adversarial samples, which is different from input or output perturbation-based adversarial attacks, the proposed model considers adversarial perturbations of interpretable zero-order fuzzy rules in a knowledge-oblivion and/or knowledge-bias or their ensemble to mimic the robust use of knowledge in the human thinking process. Through dynamic regularization, the proposed model is theoretically justified for its strong generalization capability. Accordingly, a novel knowledge adversarial training method called KAT is devised to achieve promising generalization performance, interpretability, and fast training for zero-order TSK fuzzy classifiers. The effectiveness of KAT is manifested by the experimental results on 15 benchmarking UCI and KEEL datasets.
虽然基于输入或输出扰动的对抗训练技术已经被用于通过动态正则化来提高各种非模糊和模糊分类器的泛化能力,但其性能可能对一些不合适的对抗样本非常敏感。为了避免这个弱点,同时确保增强的泛化能力,这项工作试图探索一种新的零阶 Tagaki-Sugeno-Kang(TSK)模糊分类器的知识对抗攻击模型。所提出的模型的动机是利用从训练可解释的零阶 TSK 模糊分类器的人类思维过程的角度来看存在的特殊知识对抗攻击。与基于输入或输出扰动的对抗攻击不同,所提出的模型不直接使用对抗样本,而是考虑可解释的零阶模糊规则的对抗扰动在知识遗忘和/或知识偏差或其集合中,以模拟人类思维过程中对知识的稳健使用。通过动态正则化,所提出的模型在理论上被证明具有很强的泛化能力。因此,设计了一种新的知识对抗训练方法称为 KAT,以实现零阶 TSK 模糊分类器的有希望的泛化性能、可解释性和快速训练。KAT 的有效性通过在 15 个基准 UCI 和 KEEL 数据集上的实验结果得到证明。