Suppr超能文献

进化动态优化中的子种群自适应控制。

Adaptive Control of Subpopulations in Evolutionary Dynamic Optimization.

出版信息

IEEE Trans Cybern. 2022 Jul;52(7):6476-6489. doi: 10.1109/TCYB.2020.3036100. Epub 2022 Jul 4.

Abstract

Multipopulation methods are highly effective in solving dynamic optimization problems. Three factors affect this significantly: 1) the exclusion mechanisms to avoid the convergence to the same peak by multiple subpopulations; 2) the resource allocation mechanism that assigns the computational resources to the subpopulations; and 3) the control mechanisms to adaptively adjust the number of subpopulations by considering the number of optima and available computational resources. In the existing exclusion mechanisms, when the distance (i.e., the distance between their best found positions) between two subpopulations becomes less than a predefined threshold, the inferior one will be removed/reinitialized. However, this leads to incapability of algorithms in covering peaks/optima that are closer than the threshold. Moreover, despite the importance of resource allocation due to the limited available computational resources between environmental changes, it has not been well studied in the literature. Finally, the number of subpopulations should be adapted to the number of optima. However, in most existing adaptive multipopulation methods, there is no predefined upper bound for generating subpopulations. Consequently, in problems with large numbers of peaks, they can generate too many subpopulations sharing limited computational resources. In this article, a multipopulation framework is proposed to address the aforementioned issues by using three adaptive approaches: 1) subpopulation generation; 2) double-layer exclusion; and 3) computational resource allocation. The experimental results demonstrate the superiority of the proposed framework over several peer approaches in solving various benchmark problems.

摘要

多群体方法在解决动态优化问题方面非常有效。有三个因素会显著影响其效果:1)排除机制,以避免多个子群体收敛到同一个峰值;2)资源分配机制,将计算资源分配给子群体;3)控制机制,根据最优解的数量和可用计算资源自适应地调整子群体的数量。在现有的排除机制中,当两个子群体之间的距离(即它们最佳发现位置之间的距离)小于预定义的阈值时,较差的一个将被移除/重新初始化。然而,这导致算法无法覆盖距离小于阈值的峰值/最优解。此外,尽管由于环境变化之间可用计算资源有限,资源分配很重要,但在文献中尚未得到很好的研究。最后,子群体的数量应适应最优解的数量。然而,在大多数现有的自适应多群体方法中,生成子群体并没有预设的上限。因此,在具有大量峰值的问题中,它们可能会生成太多共享有限计算资源的子群体。本文提出了一种多群体框架,通过使用三种自适应方法来解决上述问题:1)子群体生成;2)双层排除;3)计算资源分配。实验结果表明,该框架在解决各种基准问题方面优于几种同类方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验