Tamburini Fabrizio, Licata Ignazio
ZKM-Zentrum für Kunst und Medientechnologie, Lorentzstr. 19, D-76135 Karlsruhe, Germany.
Institute for Scientific Methodology (ISEM), Via Ugo La Malfa 153, I-90146 Palermo, Italy.
Entropy (Basel). 2019 Dec 18;22(1):3. doi: 10.3390/e22010003.
Einstein's equations of general relativity (GR) can describe the connection between events within a given hypervolume of size larger than the Planck length L P in terms of wormhole connections where metric fluctuations give rise to an indetermination relationship that involves the Riemann curvature tensor. At low energies (when L ≫ L P ), these connections behave like an exchange of a virtual graviton with wavelength λ G = L as if gravitation were an emergent physical property. Down to Planck scales, wormholes avoid the gravitational collapse and any superposition of events or space-times become indistinguishable. These properties of Einstein's equations can find connections with the novel picture of quantum gravity (QG) known as the "Einstein-Rosen (ER) = Einstein-Podolski-Rosen (EPR)" (ER = EPR) conjecture proposed by Susskind and Maldacena in Anti-de-Sitter (AdS) space-times in their equivalence with conformal field theories (CFTs). In this scenario, non-traversable wormhole connections of two or more distant events in space-time through Einstein-Rosen (ER) wormholes that are solutions of the equations of GR, are supposed to be equivalent to events connected with non-local Einstein-Podolski-Rosen (EPR) entangled states that instead belong to the language of quantum mechanics. Our findings suggest that if the ER = EPR conjecture is valid, it can be extended to other different types of space-times and that gravity and space-time could be emergent physical quantities if the exchange of a virtual graviton between events can be considered connected by ER wormholes equivalent to entanglement connections.
爱因斯坦的广义相对论(GR)方程可以通过虫洞连接来描述给定超体积(其大小大于普朗克长度(L_P))内事件之间的联系,其中度规涨落会产生一种不确定性关系,该关系涉及黎曼曲率张量。在低能量状态下(当(L\gg L_P)时),这些连接的行为就像一个波长为(\lambda_G = L)的虚引力子的交换,仿佛引力是一种涌现的物理属性。在普朗克尺度以下,虫洞避免了引力坍缩,任何事件或时空的叠加都变得无法区分。爱因斯坦方程的这些性质可以与量子引力(QG)的新图景建立联系,这种新图景被称为“爱因斯坦 - 罗森(ER)= 爱因斯坦 - 波多尔斯基 - 罗森(EPR)”(ER = EPR)猜想,是由萨斯坎德和马尔达西那在反德西特(AdS)时空与共形场论(CFT)的等价关系中提出的。在这种情况下,通过作为GR方程解的爱因斯坦 - 罗森(ER)虫洞,时空里两个或多个遥远事件的不可穿越虫洞连接,被认为等同于与非局域爱因斯坦 - 波多尔斯基 - 罗森(EPR)纠缠态相连的事件,而后者属于量子力学的范畴。我们的研究结果表明,如果ER = EPR猜想是有效的,它可以扩展到其他不同类型的时空,并且如果事件之间虚引力子的交换可以被认为是由等同于纠缠连接的ER虫洞连接起来的,那么引力和时空可能是涌现的物理量。