Suppr超能文献

分类深度神经网络适用于盲图像水印吗?

Are Classification Deep Neural Networks Good for Blind Image Watermarking?

作者信息

Vukotić Vedran, Chappelier Vivien, Furon Teddy

机构信息

Lamark, 35000 Rennes, France.

INRIA, CNRS, IRISA, University of Rennes, 35000 Rennes, France.

出版信息

Entropy (Basel). 2020 Feb 8;22(2):198. doi: 10.3390/e22020198.

Abstract

Image watermarking is usually decomposed into three steps: (i) a feature vector is extracted from an image; (ii) it is modified to embed the watermark; (iii) and it is projected back into the image space while avoiding the creation of visual artefacts. This feature extraction is usually based on a classical image representation given by the Discrete Wavelet Transform or the Discrete Cosine Transform for instance. These transformations require very accurate synchronisation between the embedding and the detection and usually rely on various registration mechanisms for that purpose. This paper investigates a new family of transformation based on Deep Neural Networks trained with supervision for a classification task. Motivations come from the Computer Vision literature, which has demonstrated the robustness of these features against light geometric distortions. Also, adversarial sample literature provides means to implement the inverse transform needed in the third step above mentioned. As far as zero-bit watermarking is concerned, this paper shows that this approach is feasible as it yields a good quality of the watermarked images and an intrinsic robustness. We also tests more advanced tools from Computer Vision such as aggregation schemes with weak geometry and retraining with a dataset augmented with classical image processing attacks.

摘要

图像水印通常可分解为三个步骤

(i) 从图像中提取特征向量;(ii) 对其进行修改以嵌入水印;(iii) 将其投影回图像空间,同时避免产生视觉伪像。这种特征提取通常基于例如离散小波变换或离散余弦变换给出的经典图像表示。这些变换需要在嵌入和检测之间进行非常精确的同步,并且通常为此依赖于各种配准机制。本文研究了一类基于深度神经网络的新变换,该网络通过监督训练用于分类任务。动机来自计算机视觉文献,其已证明这些特征对轻度几何失真具有鲁棒性。此外,对抗样本文献提供了实现上述第三步所需逆变换的方法。就零比特水印而言,本文表明这种方法是可行的,因为它能产生高质量的水印图像和内在的鲁棒性。我们还测试了来自计算机视觉的更先进工具,例如具有弱几何的聚合方案以及使用经过经典图像处理攻击增强的数据集进行重新训练。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1290/7516632/8e0ab0770433/entropy-22-00198-g0A1a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验