Suppr超能文献

用于改善热回收的超临界二氧化碳布雷顿循环布局的提议及热力学评估

Proposal and Thermodynamic Assessment of S-CO Brayton Cycle Layout for Improved Heat Recovery.

作者信息

Siddiqui Muhammad Ehtisham, Almitani Khalid H

机构信息

Mechanical Engineering Department, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

出版信息

Entropy (Basel). 2020 Mar 6;22(3):305. doi: 10.3390/e22030305.

Abstract

This article deals with the thermodynamic assessment of supercritical carbon dioxide (S-CO) Brayton power cycles. The main advantage of S-CO cycles is the capability of achieving higher efficiencies at significantly lower temperatures in comparison to conventional steam Rankine cycles. In the past decade, variety of configurations and layouts of S-CO cycles have been investigated targeting efficiency improvement. In this paper, four different layouts have been studied (with and without reheat): Simple Brayton cycle, Recompression Brayton cycle, Recompression Brayton cycle with partial cooling and the proposed layout called Recompression Brayton cycle with partial cooling and improved heat recovery (RBC-PC-IHR). Energetic and exergetic performances of all configurations were analyzed. Simple configuration is the least efficient due to poor heat recovery mechanism. RBC-PC-IHR layout achieved the best thermal performance in both reheat and no reheat configurations ( η t h   = 59.7% with reheat and η t h   = 58.2 without reheat at 850 °C), which was due to better heat recovery in comparison to other layouts. The detailed component-wise exergy analysis shows that the turbines and compressors have minimal contribution towards exergy destruction in comparison to what is lost by heat exchangers and heat source.

摘要

本文探讨了超临界二氧化碳(S-CO)布雷顿动力循环的热力学评估。与传统的蒸汽朗肯循环相比,S-CO循环的主要优势在于能够在显著更低的温度下实现更高的效率。在过去十年中,为了提高效率,人们对S-CO循环的各种配置和布局进行了研究。本文研究了四种不同的布局(有再热和无再热):简单布雷顿循环、再压缩布雷顿循环、带部分冷却的再压缩布雷顿循环以及提出的带部分冷却和改进热回收的再压缩布雷顿循环(RBC-PC-IHR)。分析了所有配置的能量和㶲性能。简单配置由于热回收机制不佳而效率最低。RBC-PC-IHR布局在有再热和无再热配置中均实现了最佳热性能(在850°C时,有再热时热效率ηth = 59.7%,无再热时热效率ηth = 58.2%),这是因为与其他布局相比,其热回收效果更好。详细的按组件进行的㶲分析表明,与热交换器和热源损失的㶲相比,涡轮机和压缩机对㶲破坏的贡献最小。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/315b/7516765/85e6c0e4a72d/entropy-22-00305-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验