Suppr超能文献

从约旦积到经典与量子态上的黎曼几何。

From the Jordan Product to Riemannian Geometries on Classical and Quantum States.

作者信息

Ciaglia Florio M, Jost Jürgen, Schwachhöfer Lorenz

机构信息

Max Planck Institute for Mathematics in the Sciences, 04103 Leipzig, Germany.

Faculty for Mathematics, TU Dortmund University, 44221 Dortmund, Germany.

出版信息

Entropy (Basel). 2020 Jun 8;22(6):637. doi: 10.3390/e22060637.

Abstract

The Jordan product on the self-adjoint part of a finite-dimensional C * -algebra A is shown to give rise to Riemannian metric tensors on suitable manifolds of states on A , and the covariant derivative, the geodesics, the Riemann tensor, and the sectional curvature of all these metric tensors are explicitly computed. In particular, it is proved that the Fisher-Rao metric tensor is recovered in the Abelian case, that the Fubini-Study metric tensor is recovered when we consider pure states on the algebra B ( H ) of linear operators on a finite-dimensional Hilbert space H , and that the Bures-Helstrom metric tensors is recovered when we consider faithful states on B ( H ) . Moreover, an alternative derivation of these Riemannian metric tensors in terms of the GNS construction associated to a state is presented. In the case of pure and faithful states on B ( H ) , this alternative geometrical description clarifies the analogy between the Fubini-Study and the Bures-Helstrom metric tensor.

摘要

有限维C* -代数A的自伴部分上的约当积被证明能在A上合适的态流形上产生黎曼度量张量,并且明确计算了所有这些度量张量的协变导数、测地线、黎曼张量和截面曲率。特别地,证明了在阿贝尔情形下可恢复费希尔 - 拉奥度量张量,当考虑有限维希尔伯特空间H上线性算子的代数B(H)上的纯态时可恢复富比尼 - 施图迪度量张量,以及当考虑B(H)上的忠实态时可恢复布雷斯 - 赫尔斯托姆度量张量。此外,给出了根据与一个态相关的GNS构造对这些黎曼度量张量的另一种推导。在B(H)上的纯态和忠实态的情形下,这种替代的几何描述阐明了富比尼 - 施图迪度量张量与布雷斯 - 赫尔斯托姆度量张量之间的类比。

相似文献

3
Quantum Statistical Manifolds.量子统计流形
Entropy (Basel). 2018 Jun 17;20(6):472. doi: 10.3390/e20060472.
6
Smooth Interpolation of Covariance Matrices and Brain Network Estimation.协方差矩阵的平滑插值与脑网络估计
IEEE Trans Automat Contr. 2019 Aug;64(8):3184-3193. doi: 10.1109/tac.2018.2879597. Epub 2018 Nov 5.
7
Cross Euclidean-to-Riemannian Metric Learning with Application to Face Recognition from Video.基于欧式到黎曼度量学习的视频人脸识别方法
IEEE Trans Pattern Anal Mach Intell. 2018 Dec;40(12):2827-2840. doi: 10.1109/TPAMI.2017.2776154. Epub 2017 Nov 22.
8
Hilbert Space Geometry of Random Matrix Eigenstates.随机矩阵本征态的希尔伯特空间几何
Phys Rev Lett. 2021 May 21;126(20):200604. doi: 10.1103/PhysRevLett.126.200604.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验