Suppr超能文献

具有合成后验分布的稳健贝叶斯回归

Robust Bayesian Regression with Synthetic Posterior Distributions.

作者信息

Hashimoto Shintaro, Sugasawa Shonosuke

机构信息

Department of Mathematics, Hiroshima University, Hiroshima 739-8521, Japan.

Center for Spatial Information Science, The University of Tokyo, Chiba 277-8568, Japan.

出版信息

Entropy (Basel). 2020 Jun 15;22(6):661. doi: 10.3390/e22060661.

Abstract

Although linear regression models are fundamental tools in statistical science, the estimation results can be sensitive to outliers. While several robust methods have been proposed in frequentist frameworks, statistical inference is not necessarily straightforward. We here propose a Bayesian approach to robust inference on linear regression models using synthetic posterior distributions based on -divergence, which enables us to naturally assess the uncertainty of the estimation through the posterior distribution. We also consider the use of shrinkage priors for the regression coefficients to carry out robust Bayesian variable selection and estimation simultaneously. We develop an efficient posterior computation algorithm by adopting the Bayesian bootstrap within Gibbs sampling. The performance of the proposed method is illustrated through simulation studies and applications to famous datasets.

摘要

尽管线性回归模型是统计科学中的基本工具,但估计结果可能对异常值敏感。虽然在频率主义框架中已经提出了几种稳健方法,但统计推断并不一定简单直接。我们在此提出一种贝叶斯方法,用于基于线性回归模型的稳健推断,该方法使用基于散度的合成后验分布,这使我们能够通过后验分布自然地评估估计的不确定性。我们还考虑使用回归系数的收缩先验来同时进行稳健的贝叶斯变量选择和估计。我们通过在吉布斯采样中采用贝叶斯自助法开发了一种高效的后验计算算法。通过模拟研究和对著名数据集的应用说明了所提出方法的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/15fe/7517196/f8c5d521d59b/entropy-22-00661-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验