Hashimoto Shintaro, Sugasawa Shonosuke
Department of Mathematics, Hiroshima University, Hiroshima 739-8521, Japan.
Center for Spatial Information Science, The University of Tokyo, Chiba 277-8568, Japan.
Entropy (Basel). 2020 Jun 15;22(6):661. doi: 10.3390/e22060661.
Although linear regression models are fundamental tools in statistical science, the estimation results can be sensitive to outliers. While several robust methods have been proposed in frequentist frameworks, statistical inference is not necessarily straightforward. We here propose a Bayesian approach to robust inference on linear regression models using synthetic posterior distributions based on -divergence, which enables us to naturally assess the uncertainty of the estimation through the posterior distribution. We also consider the use of shrinkage priors for the regression coefficients to carry out robust Bayesian variable selection and estimation simultaneously. We develop an efficient posterior computation algorithm by adopting the Bayesian bootstrap within Gibbs sampling. The performance of the proposed method is illustrated through simulation studies and applications to famous datasets.
尽管线性回归模型是统计科学中的基本工具,但估计结果可能对异常值敏感。虽然在频率主义框架中已经提出了几种稳健方法,但统计推断并不一定简单直接。我们在此提出一种贝叶斯方法,用于基于线性回归模型的稳健推断,该方法使用基于散度的合成后验分布,这使我们能够通过后验分布自然地评估估计的不确定性。我们还考虑使用回归系数的收缩先验来同时进行稳健的贝叶斯变量选择和估计。我们通过在吉布斯采样中采用贝叶斯自助法开发了一种高效的后验计算算法。通过模拟研究和对著名数据集的应用说明了所提出方法的性能。