Gelincik Samet, Rekaya-Ben Othman Ghaya
Institut National des Sciences Appliquées de Rennes, Université de Rennes, 20 Avenue des Buttes de Coesmes, 35708 Rennes, France.
Laboratoire Traitement et Communication de l'Information (LTCI), Telecom Paris, Institut Polytechnique de Paris, 91120 Palaiseau, France.
Entropy (Basel). 2020 Jun 16;22(6):668. doi: 10.3390/e22060668.
This paper investigates the achievable per-user (DoF) in multi-cloud based sectored hexagonal cellular networks (M-CRAN) at uplink. The network consists of base stations (BS) and K ≤ N s (BBUP), which function as independent cloud centers. The communication between BSs and BBUPs occurs by means of finite-capacity fronthaul links of capacities C F = μ F · 1 2 log ( 1 + P ) with denoting transmit power. In the system model, BBUPs have limited C BBU = μ BBU · 1 2 log ( 1 + P ) . We propose two different achievability schemes based on dividing the network into non-interfering parallelogram and hexagonal clusters, respectively. The minimum number of users in a cluster is determined by the ratio of BBUPs to BSs, r = K / N . Both of the parallelogram and hexagonal schemes are based on practically implementable beamforming and adapt the way of forming clusters to the sectorization of the cells. Proposed coding schemes improve the sum-rate over naive approaches that ignore cell sectorization, both at finite signal-to-noise ratio (SNR) and in the high-SNR limit. We derive a lower bound on per-user DoF which is a function of μ BBU , μ F , and . We show that cut-set bound are attained for several cases, the achievability gap between lower and cut-set bounds decreases with the inverse of BBUP-BS ratio 1 r for μ F ≤ 2 M irrespective of μ BBU , and that per-user DoF achieved through hexagonal clustering can not exceed the per-user DoF of parallelogram clustering for any value of μ BBU and as long as μ F ≤ 2 M . Since the achievability gap decreases with inverse of the BBUP-BS ratio for small and moderate fronthaul capacities, the cut-set bound is almost achieved even for small cluster sizes for this range of fronthaul capacities. For higher fronthaul capacities, the achievability gap is not always tight but decreases with processing capacity. However, the cut-set bound, e.g., at 5 M 6 , can be achieved with a moderate clustering size.
本文研究了基于多云的扇形六边形蜂窝网络(M-CRAN)在上行链路中可实现的单用户自由度(DoF)。该网络由基站(BS)和K≤Ns个基带处理单元(BBUP)组成,这些基带处理单元充当独立的云中心。基站与基带处理单元之间通过容量为CF = μF·1/2 log(1 + P)的有限容量前传链路进行通信,其中P表示发射功率。在系统模型中,基带处理单元具有有限容量CBU = μBBU·1/2 log(1 + P)。我们分别基于将网络划分为无干扰平行四边形和六边形簇,提出了两种不同的可达性方案。一个簇中的最小用户数由基带处理单元与基站的比例r = K / N确定。平行四边形和六边形方案均基于实际可实现的波束成形,并根据小区的扇区划分来调整形成簇的方式。所提出的编码方案在有限信噪比(SNR)和高SNR极限下,均比忽略小区扇区划分的简单方法提高了和速率。我们推导了单用户自由度的下限,它是μBBU、μF和的函数。我们表明,在几种情况下达到了割集界,对于μF≤2M,下限与割集界之间的可达性差距随着基带处理单元 - 基站比例1/r的倒数而减小,与μBBU无关,并且只要μF≤2M,对于任何μBBU和的值,通过六边形聚类实现的单用户自由度都不会超过平行四边形聚类的单用户自由度。由于对于中小前传容量,可达性差距随着基带处理单元 - 基站比例的倒数而减小,因此对于该前传容量范围,即使对于小簇大小,也几乎达到了割集界。对于更高的前传容量,可达性差距并不总是很紧,但随着处理能力而减小。然而,例如在5M/6时,通过适度的聚类大小可以达到割集界。