Suppr超能文献

基于熵的占用检测指标:利用能源需求进行检测

Entropy-Based Metrics for Occupancy Detection Using Energy Demand.

作者信息

Hock Denis, Kappes Martin, Ghita Bogdan

机构信息

Faculty of Computer Science and Engineering, University of Applied Sciences Frankfurt am Main, 60318 Frankfurt am Main, Germany.

School of Engineering, Computing and Mathematics, Plymouth University, Plymouth PL4 8AA, UK.

出版信息

Entropy (Basel). 2020 Jun 30;22(7):731. doi: 10.3390/e22070731.

Abstract

Smart Meters provide detailed energy consumption data and rich contextual information that can be utilized to assist electricity providers and consumers in understanding and managing energy use. The detection of human activity in residential households is a valuable extension for applications, such as home automation, demand side management, or non-intrusive load monitoring, but it usually requires the installation of dedicated sensors. In this paper, we propose and evaluate two new metrics, namely the sliding window entropy and the interval entropy, inspired by Shannon's entropy in order to obtain information regarding human activity from smart meter readings. We emphasise on the application of the entropy and analyse the effect of input parameters, in order to lay the foundation for future work. We compare our method to other methods, including the Page-Hinkley test and geometric moving average, which have been used for occupancy detection on the same dataset by other authors. Our experimental results, using the power measurements of the publicly available ECO dataset, indicate that the accuracy and area under the curve of our method can keep up with other well-known statistical methods, stressing the practical relevance of our approach.

摘要

智能电表提供详细的能源消耗数据和丰富的上下文信息,可用于协助电力供应商和消费者了解和管理能源使用情况。检测居民家庭中的人类活动是家庭自动化、需求侧管理或非侵入式负载监测等应用的一项有价值的扩展,但通常需要安装专用传感器。在本文中,我们受香农熵的启发,提出并评估了两个新的指标,即滑动窗口熵和区间熵,以便从智能电表读数中获取有关人类活动的信息。我们着重于熵的应用并分析输入参数的影响,为未来的工作奠定基础。我们将我们的方法与其他方法进行比较,包括Page-Hinkley检验和几何移动平均线,其他作者已在同一数据集上使用这些方法进行占用检测。我们使用公开可用的ECO数据集的功率测量结果进行的实验表明,我们方法的准确性和曲线下面积可以与其他著名的统计方法相媲美,强调了我们方法的实际相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3f3/7517271/3bc130141db6/entropy-22-00731-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验