Intelligent Media Laboratory, Digital Contents Research Institute, Sejong University, Seoul 143-747, Korea.
Sensors (Basel). 2020 Mar 4;20(5):1399. doi: 10.3390/s20051399.
Due to industrialization and the rising demand for energy, global energy consumption has been rapidly increasing. Recent studies show that the biggest portion of energy is consumed in residential buildings, i.e., in European Union countries up to 40% of the total energy is consumed by households. Most residential buildings and industrial zones are equipped with smart sensors such as metering electric sensors, that are inadequately utilized for better energy management. In this paper, we develop a hybrid convolutional neural network (CNN) with an long short-term memory autoencoder (LSTM-AE) model for future energy prediction in residential and commercial buildings. The central focus of this research work is to utilize the smart meters' data for energy forecasting in order to enable appropriate energy management in buildings. We performed extensive research using several deep learning-based forecasting models and proposed an optimal hybrid CNN with the LSTM-AE model. To the best of our knowledge, we are the first to incorporate the aforementioned models under the umbrella of a unified framework with some utility preprocessing. Initially, the CNN model extracts features from the input data, which are then fed to the LSTM-encoder to generate encoded sequences. The encoded sequences are decoded by another following LSTM-decoder to advance it to the final dense layer for energy prediction. The experimental results using different evaluation metrics show that the proposed hybrid model works well. Also, it records the smallest value for mean square error (MSE), mean absolute error (MAE), root mean square error (RMSE) and mean absolute percentage error (MAPE) when compared to other state-of-the-art forecasting methods over the UCI residential building dataset. Furthermore, we conducted experiments on Korean commercial building data and the results indicate that our proposed hybrid model is a worthy contribution to energy forecasting.
由于工业化和能源需求的增长,全球能源消耗迅速增加。最近的研究表明,能源的最大部分消耗在住宅建筑中,即在欧盟国家,家庭消耗的能源高达总能源的 40%。大多数住宅建筑和工业区都配备了智能传感器,例如电量计量传感器,但这些传感器并没有得到充分利用,无法进行更好的能源管理。在本文中,我们开发了一种混合卷积神经网络(CNN)和长短期记忆自动编码器(LSTM-AE)模型,用于预测住宅和商业建筑的未来能源。这项研究工作的核心重点是利用智能电表数据进行能源预测,以便在建筑物中实现适当的能源管理。我们使用了几种基于深度学习的预测模型进行了广泛的研究,并提出了一种最佳的混合 CNN 与 LSTM-AE 模型。据我们所知,我们是第一个在统一框架下结合一些实用预处理将上述模型结合在一起的人。最初,CNN 模型从输入数据中提取特征,然后将这些特征输入到 LSTM 编码器中生成编码序列。编码序列由另一个后续的 LSTM 解码器解码,以将其推进到最终的密集层进行能源预测。使用不同的评估指标进行的实验结果表明,所提出的混合模型效果很好。此外,与 UCI 住宅建筑数据集上的其他最先进的预测方法相比,它记录了最小的均方误差(MSE)、平均绝对误差(MAE)、均方根误差(RMSE)和平均绝对百分比误差(MAPE)值。此外,我们还对韩国商业建筑数据进行了实验,结果表明,我们提出的混合模型是对能源预测的一个有价值的贡献。