Suppr超能文献

可观测与不可观测的机械运动。

Observable and Unobservable Mechanical Motion.

作者信息

Müller J Gerhard

机构信息

Department of Applied Sciences and Mechatronics, Munich University of Applied Sciences, D-80335 Munich, Germany.

出版信息

Entropy (Basel). 2020 Jul 3;22(7):737. doi: 10.3390/e22070737.

Abstract

A thermodynamic approach to mechanical motion is presented, and it is shown that dissipation of energy is the key process through which mechanical motion becomes observable. By studying charged particles moving in conservative central force fields, it is shown that the process of radiation emission can be treated as a frictional process that withdraws mechanical energy from the moving particles and that dissipates the radiation energy in the environment. When the dissipation occurs inside natural (eye) or technical photon detectors, detection events are produced which form observational images of the underlying mechanical motion. As the individual events, in which radiation is emitted and detected, represent pieces of physical action that add onto the physical action associated with the mechanical motion itself, observation appears as a physical overhead that is burdened onto the mechanical motion. We show that such overheads are minimized by particles following Hamilton's equations of motion. In this way, trajectories with minimum curvature are selected and dissipative processes connected with their observation are minimized. The minimum action principles which lie at the heart of Hamilton's equations of motion thereby appear as principles of minimum energy dissipation and/or minimum information gain. Whereas these principles dominate the motion of single macroscopic particles, these principles become challenged in microscopic and intensely interacting multi-particle systems such as molecules moving inside macroscopic volumes of gas.

摘要

本文提出了一种研究机械运动的热力学方法,结果表明能量耗散是使机械运动变得可观测的关键过程。通过研究在保守中心力场中运动的带电粒子,发现辐射发射过程可被视为一个摩擦过程,该过程从运动粒子中提取机械能,并将辐射能量耗散到环境中。当在自然(眼睛)或技术光子探测器内部发生耗散时,就会产生探测事件,这些事件形成了潜在机械运动的观测图像。由于发射和探测辐射的单个事件代表了与机械运动本身相关的物理作用之外的额外物理作用,观测就表现为加诸于机械运动之上的一种物理负担。我们表明,遵循哈密顿运动方程的粒子可使这种负担最小化。通过这种方式,选择了曲率最小的轨迹,并将与其观测相关的耗散过程降至最低。因此,作为哈密顿运动方程核心的最小作用量原理,表现为最小能量耗散和/或最小信息增益原理。虽然这些原理主导着单个宏观粒子的运动,但在微观和强相互作用的多粒子系统中,如在宏观体积气体中运动的分子,这些原理受到了挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4aad/7517280/2a1fac7a0e41/entropy-22-00737-g0A1.jpg

相似文献

1
Observable and Unobservable Mechanical Motion.
Entropy (Basel). 2020 Jul 3;22(7):737. doi: 10.3390/e22070737.
2
Hamiltonian Computational Chemistry: Geometrical Structures in Chemical Dynamics and Kinetics.
Entropy (Basel). 2024 Apr 30;26(5):399. doi: 10.3390/e26050399.
4
Classical mechanics of nonconservative systems.
Phys Rev Lett. 2013 Apr 26;110(17):174301. doi: 10.1103/PhysRevLett.110.174301. Epub 2013 Apr 22.
5
Forced Friends: Why the Free Energy Principle Is Not the New Hamilton's Principle.
Entropy (Basel). 2024 Sep 18;26(9):797. doi: 10.3390/e26090797.
6
An electromechanical model of neuronal dynamics using Hamilton's principle.
Front Cell Neurosci. 2015 Jul 16;9:271. doi: 10.3389/fncel.2015.00271. eCollection 2015.
8
Modelling vortex-induced fluid-structure interaction.
Philos Trans A Math Phys Eng Sci. 2008 Apr 13;366(1868):1231-74. doi: 10.1098/rsta.2007.2130.
9
Modeling of the moving deformed triple contact line: influence of the fluid inertia.
J Colloid Interface Sci. 2006 Oct 15;302(2):605-12. doi: 10.1016/j.jcis.2006.06.046. Epub 2006 Aug 8.
10
Non-Markovian Quantum Friction of Bright Solitons in Superfluids.
Phys Rev Lett. 2016 Jun 3;116(22):225301. doi: 10.1103/PhysRevLett.116.225301. Epub 2016 May 31.

本文引用的文献

1
Informational Reinterpretation of the Mechanics Notions and Laws.
Entropy (Basel). 2020 Jun 7;22(6):631. doi: 10.3390/e22060631.
2
Photon Detection as a Process of Information Gain.
Entropy (Basel). 2020 Mar 30;22(4):392. doi: 10.3390/e22040392.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验