Mercurio Peter Joseph, Wu Yuehua, Xie Hong
Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada.
Manulife Financial Corp., Toronto, ON M4W 1E5, Canada.
Entropy (Basel). 2020 Jul 9;22(7):752. doi: 10.3390/e22070752.
The portfolio optimization problem generally refers to creating an investment portfolio or asset allocation that achieves an optimal balance of expected risk and return. These portfolio returns are traditionally assumed to be continuous random variables. In , we introduced a novel non-parametric optimization method based on Shannon entropy, called return-entropy portfolio optimization (REPO), which offers a simple and fast optimization algorithm for assets with continuous returns. Here, in this paper, we would like to extend the REPO approach to the optimization problem for assets with discrete distributed returns, such as those from a Bernoulli distribution like binary options. Under a discrete probability distribution, portfolios of binary options can be viewed as repeated short-term investments with an optimal buy/sell strategy or general betting strategy. Upon the outcome of each contract, the portfolio incurs a profit (success) or loss (failure). This is similar to a series of gambling wagers. Portfolio selection under this setting can be formulated as a new optimization problem called discrete entropic portfolio optimization (DEPO). DEPO creates optimal portfolios for discrete return assets based on expected growth rate and relative entropy. We show how a portfolio of binary options provides an ideal general setting for this kind of portfolio selection. As an example we apply DEPO to a portfolio of short-term foreign exchange currency pair binary options from the NADEX exchange platform and show how it outperforms leading Kelly criterion strategies. We also provide an additional example of a gambling application using a portfolio of sports bets over the course of an NFL season and present the advantages of DEPO over competing Kelly criterion strategies.
投资组合优化问题通常是指创建一个投资组合或资产配置,以实现预期风险和回报的最佳平衡。传统上,这些投资组合回报被假定为连续随机变量。在[相关文献]中,我们介绍了一种基于香农熵的新型非参数优化方法,称为回报 - 熵投资组合优化(REPO),它为具有连续回报的资产提供了一种简单快速的优化算法。在此,在本文中,我们希望将REPO方法扩展到具有离散分布回报的资产的优化问题,例如来自二元期权等伯努利分布的资产。在离散概率分布下,二元期权投资组合可以被视为具有最优买卖策略或一般投注策略的重复短期投资。根据每份合约的结果,投资组合会产生利润(成功)或损失(失败)。这类似于一系列赌博投注。在这种情况下的投资组合选择可以被表述为一个新的优化问题,称为离散熵投资组合优化(DEPO)。DEPO基于预期增长率和相对熵为离散回报资产创建最优投资组合。我们展示了二元期权投资组合如何为这种投资组合选择提供一个理想的一般框架。作为一个例子,我们将DEPO应用于来自NADEX交易平台的短期外汇货币对二元期权投资组合,并展示它如何优于领先的凯利准则策略。我们还提供了一个使用美国国家橄榄球联盟(NFL)赛季期间体育博彩投资组合的赌博应用的额外例子,并展示了DEPO相对于竞争的凯利准则策略的优势。