Suppr超能文献

一种用于计算具有给定顶点数和自环的树状图数量的高效算法。

An Efficient Algorithm to Count Tree-Like Graphs with a Given Number of Vertices and Self-Loops.

作者信息

Azam Naveed Ahmed, Shurbevski Aleksandar, Nagamochi Hiroshi

机构信息

Department of Applied Mathematics and Physics, Kyoto University, Kyoto 606-8502, Japan.

出版信息

Entropy (Basel). 2020 Aug 22;22(9):923. doi: 10.3390/e22090923.

Abstract

Graph enumeration with given constraints is an interesting problem considered to be one of the fundamental problems in graph theory, with many applications in natural sciences and engineering such as bio-informatics and computational chemistry. For any two integers n≥1 and Δ≥0, we propose a method to count all non-isomorphic trees with vertices, Δ self-loops, and no multi-edges based on dynamic programming. To achieve this goal, we count the number of non-isomorphic rooted trees with vertices, Δ self-loops and no multi-edges, in O(n2(n+Δ(n+Δ·min{n,Δ}))) time and O(n2(Δ2+1)) space, since every tree can be uniquely viewed as a rooted tree by either regarding its unicentroid as the root, or in the case of bicentroid, by introducing a virtual vertex on the bicentroid and assuming the virtual vertex to be the root. By this result, we get a lower bound and an upper bound on the number of tree-like polymer topologies of chemical compounds with any "cycle rank".

摘要

具有给定约束条件的图枚举是图论中的一个有趣问题,被认为是图论的基本问题之一,在自然科学和工程领域有许多应用,如生物信息学和计算化学。对于任意两个整数n≥1和Δ≥0,我们提出一种基于动态规划的方法来计算具有n个顶点、Δ个自环且无多重边的所有非同构树的数量。为实现这一目标,我们在O(n2(n + Δ(n + Δ·min{n,Δ})))时间和O(n2(Δ2 + 1))空间内计算具有n个顶点、Δ个自环且无多重边的非同构有根树的数量,因为每棵树都可以通过将其单重心视为根,或者在双重心的情况下,通过在双重心上引入一个虚拟顶点并假设该虚拟顶点为根,唯一地视为一棵有根树。基于此结果,我们得到了具有任意“圈秩”的化合物的树状聚合物拓扑结构数量的下界和上界。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e20/7597174/fd9342ff3c34/entropy-22-00923-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验