Suppr超能文献

用于奇异多集电弓方程建模的机器学习

Machine Learning for Modeling the Singular Multi-Pantograph Equations.

作者信息

Mosavi Amirhosein, Shokri Manouchehr, Mansor Zulkefli, Qasem Sultan Noman, Band Shahab S, Mohammadzadeh Ardashir

机构信息

Environmental Quality, Atmospheric Science and Climate Change Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam.

Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam.

出版信息

Entropy (Basel). 2020 Sep 18;22(9):1041. doi: 10.3390/e22091041.

Abstract

In this study, a new approach to basis of intelligent systems and machine learning algorithms is introduced for solving singular multi-pantograph differential equations (SMDEs). For the first time, a type-2 fuzzy logic based approach is formulated to find an approximated solution. The rules of the suggested type-2 fuzzy logic system (T2-FLS) are optimized by the square root cubature Kalman filter (SCKF) such that the proposed fineness function to be minimized. Furthermore, the stability and boundedness of the estimation error is proved by novel approach on basis of Lyapunov theorem. The accuracy and robustness of the suggested algorithm is verified by several statistical examinations. It is shown that the suggested method results in an accurate solution with rapid convergence and a lower computational cost.

摘要

在本研究中,引入了一种基于智能系统和机器学习算法的新方法来求解奇异多潘托格拉夫微分方程(SMDEs)。首次提出了一种基于二型模糊逻辑的方法来寻找近似解。通过平方根容积卡尔曼滤波器(SCKF)对所提出的二型模糊逻辑系统(T2-FLS)的规则进行优化,以使所提出的精细度函数最小化。此外,基于李雅普诺夫定理,通过新方法证明了估计误差的稳定性和有界性。通过多次统计检验验证了所提算法的准确性和鲁棒性。结果表明,所提方法能得到收敛速度快、计算成本低的精确解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f199/7597098/4146ab4f307c/entropy-22-01041-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验