Claywell Randall, Nadai Laszlo, Felde Imre, Ardabili Sina, Mosavi Amirhosein
Kando Kalman Faculty of Electrical Engineering, Obuda University, 1034 Budapest, Hungary.
John von Neumann Faculty of Informatics, Obuda University, 1034 Budapest, Hungary.
Entropy (Basel). 2020 Oct 22;22(11):1192. doi: 10.3390/e22111192.
The accurate prediction of the solar diffuse fraction (DF), sometimes called the diffuse ratio, is an important topic for solar energy research. In the present study, the current state of Diffuse irradiance research is discussed and then three robust, machine learning (ML) models are examined using a large dataset (almost eight years) of hourly readings from Almeria, Spain. The ML models used herein, are a hybrid adaptive network-based fuzzy inference system (ANFIS), a single multi-layer perceptron (MLP) and a hybrid multi-layer perceptron grey wolf optimizer (MLP-GWO). These models were evaluated for their predictive precision, using various solar and DF irradiance data, from Spain. The results were then evaluated using frequently used evaluation criteria, the mean absolute error (MAE), mean error (ME) and the root mean square error (RMSE). The results showed that the MLP-GWO model, followed by the ANFIS model, provided a higher performance in both the training and the testing procedures.
准确预测太阳漫射分数(DF),有时也称为漫射比,是太阳能研究的一个重要课题。在本研究中,讨论了漫射辐照度研究的现状,然后使用来自西班牙阿尔梅里亚的每小时读数的大型数据集(近八年)检验了三种强大的机器学习(ML)模型。本文使用的ML模型包括基于混合自适应网络的模糊推理系统(ANFIS)、单多层感知器(MLP)和混合多层感知器灰狼优化器(MLP-GWO)。使用来自西班牙的各种太阳和DF辐照度数据,对这些模型的预测精度进行了评估。然后使用常用的评估标准,即平均绝对误差(MAE)、平均误差(ME)和均方根误差(RMSE)对结果进行评估。结果表明,MLP-GWO模型和ANFIS模型在训练和测试过程中均表现出更高的性能。