Suppr超能文献

基于人工智能的石油采收中沥青质颗粒聚集动力学精确预测框架

Artificial intelligence-based framework for precise prediction of asphaltene particle aggregation kinetics in petroleum recovery.

作者信息

Sharifzadegan Ali, Behnamnia Mohammad, Dehghan Monfared Abolfazl

机构信息

Department of Petroleum Engineering, Faculty of Petroleum, Gas and Petrochemical Engineering, Persian Gulf University, Bushehr, 75169-13817, Iran.

出版信息

Sci Rep. 2023 Oct 28;13(1):18525. doi: 10.1038/s41598-023-45685-0.

Abstract

The precipitation and deposition of asphaltene on solid surfaces present a significant challenge throughout all stages of petroleum recovery, from hydrocarbon reservoirs in porous media to wellbore and transfer pipelines. A comprehensive understanding of asphaltene aggregation phenomena is crucial for controlling deposition issues. In addition to experimental studies, accurate prediction of asphaltene aggregation kinetics, which has received less attention in previous research, is essential. This study proposes an artificial intelligence-based framework for precisely predicting asphaltene particle aggregation kinetics. Different techniques were utilized to predict the asphaltene aggregate diameter as a function of pressure, temperature, oil specific gravity, and oil asphaltene content. These methods included the adaptive neuro-fuzzy interference system (ANFIS), radial basis function (RBF) neural network optimized with the Grey Wolf Optimizer (GWO) algorithm, extreme learning machine (ELM), and multi-layer perceptron (MLP) coupled with Bayesian Regularization (BR), Levenberg-Marquardt (LM), and Scaled Conjugate Gradient (SCG) algorithms. The models were constructed using a series of published data. The results indicate the excellent correlation between predicted and experimental values using various models. However, the GWO-RBF modeling strategy demonstrated the highest accuracy among the developed models, with a determination coefficient, average absolute relative deviation percent, and root mean square error (RMSE) of 0.9993, 1.1326%, and 0.0537, respectively, for the total data.

摘要

在石油开采的各个阶段,从多孔介质中的碳氢化合物储层到井筒和输送管道,沥青质在固体表面的沉淀和沉积都是一个重大挑战。全面了解沥青质聚集现象对于控制沉积问题至关重要。除了实验研究外,准确预测沥青质聚集动力学(这在以往研究中较少受到关注)也必不可少。本研究提出了一个基于人工智能的框架,用于精确预测沥青质颗粒聚集动力学。利用不同技术预测沥青质聚集体直径与压力、温度、原油比重和原油沥青质含量的函数关系。这些方法包括自适应神经模糊推理系统(ANFIS)、采用灰狼优化算法(GWO)优化的径向基函数(RBF)神经网络、极限学习机(ELM)以及结合贝叶斯正则化(BR)、列文伯格-马夸尔特(LM)和缩放共轭梯度(SCG)算法的多层感知器(MLP)。这些模型是使用一系列已发表的数据构建的。结果表明,使用各种模型预测值与实验值之间具有良好的相关性。然而,在已开发的模型中,GWO-RBF建模策略表现出最高的准确性,对于全部数据,其决定系数、平均绝对相对偏差百分比和均方根误差(RMSE)分别为0.9993、1.1326%和0.0537。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a40/10613205/d2ffa16bf5bb/41598_2023_45685_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验