Prestipino Santi
Dipartimento di Scienze Matematiche ed Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
Entropy (Basel). 2020 Nov 13;22(11):1289. doi: 10.3390/e22111289.
Here, the zero-temperature phase behavior of bosonic particles living on the nodes of a regular spherical mesh ("Platonic mesh") and interacting through an extended Bose-Hubbard Hamiltonian has been studied. Only the hard-core version of the model for two instances of Platonic mesh is considered here. Using the mean-field decoupling approximation, it is shown that the system may exist in various ground states, which can be regarded as analogs of gas, solid, supersolid, and superfluid. For one mesh, by comparing the theoretical results with the outcome of numerical diagonalization, I manage to uncover the signatures of diagonal and off-diagonal spatial orders in a finite quantum system.
在此,研究了生活在规则球形网格(“柏拉图网格”)节点上并通过扩展的玻色 - 哈伯德哈密顿量相互作用的玻色子粒子的零温相行为。这里仅考虑了柏拉图网格两种情况的硬核版本模型。利用平均场解耦近似,结果表明该系统可能存在于各种基态,这些基态可被视为气体、固体、超固体和超流体的类似物。对于一种网格,通过将理论结果与数值对角化的结果进行比较,我成功地揭示了有限量子系统中对角和非对角空间序的特征。