Suppr超能文献

量子力学广群图景中经典态与量子态的演化

Evolution of Classical and Quantum States in the Groupoid Picture of Quantum Mechanics.

作者信息

Ciaglia Florio M, Di Cosmo Fabio, Ibort Alberto, Marmo Giuseppe

机构信息

Max Planck Institute for Mathematics in the Sciences, 04103 Leipzig, Germany.

ICMAT, Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), Nicolás Cabrera, 13-15, Campus de Cantoblanco, UAM, 28049 Madrid, Spain.

出版信息

Entropy (Basel). 2020 Nov 13;22(11):1292. doi: 10.3390/e22111292.

Abstract

The evolution of states of the composition of classical and quantum systems in the groupoid formalism for physical theories introduced recently is discussed. It is shown that the notion of a classical system, in the sense of Birkhoff and von Neumann, is equivalent, in the case of systems with a countable number of outputs, to a totally disconnected groupoid with Abelian von Neumann algebra. The impossibility of evolving a separable state of a composite system made up of a classical and a quantum one into an entangled state by means of a unitary evolution is proven in accordance with Raggio's theorem, which is extended to include a new family of separable states corresponding to the composition of a system with a totally disconnected space of outcomes and a quantum one.

摘要

讨论了最近引入的物理理论的广群形式体系中经典和量子系统组成状态的演化。结果表明,在具有可数数量输出的系统情况下,伯克霍夫和冯·诺依曼意义下的经典系统概念等同于具有阿贝尔冯·诺依曼代数的完全不连通广群。根据拉吉奥定理证明了由经典和量子系统组成的复合系统的可分态不可能通过酉演化演化为纠缠态,该定理被扩展以包括对应于具有完全不连通结果空间的系统与量子系统组成的新的可分态族。

相似文献

1
Evolution of Classical and Quantum States in the Groupoid Picture of Quantum Mechanics.
Entropy (Basel). 2020 Nov 13;22(11):1292. doi: 10.3390/e22111292.
2
Causality in Schwinger's Picture of Quantum Mechanics.
Entropy (Basel). 2022 Jan 1;24(1):75. doi: 10.3390/e24010075.
3
Contextuality in Classical Physics and Its Impact on the Foundations of Quantum Mechanics.
Entropy (Basel). 2021 Jul 27;23(8):968. doi: 10.3390/e23080968.
4
Generalized Wigner-von Neumann entropy and its typicality.
Phys Rev E. 2019 May;99(5-1):052117. doi: 10.1103/PhysRevE.99.052117.
6
Compatible quantum theory.
Rep Prog Phys. 2014 Sep;77(9):092001. doi: 10.1088/0034-4885/77/9/092001. Epub 2014 Aug 22.
7
Entropy of Quantum States.
Entropy (Basel). 2021 May 21;23(6):645. doi: 10.3390/e23060645.
8
A note on derivations of Murray-von Neumann algebras.
Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2087-93. doi: 10.1073/pnas.1321358111. Epub 2014 Jan 27.
9
Dynamics of System States in the Probability Representation of Quantum Mechanics.
Entropy (Basel). 2023 May 11;25(5):785. doi: 10.3390/e25050785.
10
Quantum Mechanics and Its Evolving Formulations.
Entropy (Basel). 2021 Jan 19;23(1):124. doi: 10.3390/e23010124.

引用本文的文献

1
Dynamics of System States in the Probability Representation of Quantum Mechanics.
Entropy (Basel). 2023 May 11;25(5):785. doi: 10.3390/e25050785.
2
Causality in Schwinger's Picture of Quantum Mechanics.
Entropy (Basel). 2022 Jan 1;24(1):75. doi: 10.3390/e24010075.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验