Ciaglia Florio M, Di Cosmo Fabio, Ibort Alberto, Marmo Giuseppe, Schiavone Luca, Zampini Alessandro
Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, Avda. de la Universidad 30, 28911 Madrid, Spain.
Instituto de Ciencias Matemáticas (ICMAT), CSIC-UAM-UC3M-UCM, C. Nicolás Cabrera 13-15, 28049 Madrid, Spain.
Entropy (Basel). 2022 Jan 1;24(1):75. doi: 10.3390/e24010075.
This paper begins the study of the relation between causality and quantum mechanics, taking advantage of the groupoidal description of quantum mechanical systems inspired by Schwinger's picture of quantum mechanics. After identifying causal structures on groupoids with a particular class of subcategories, called causal categories accordingly, it will be shown that causal structures can be recovered from a particular class of non-selfadjoint class of algebras, known as triangular operator algebras, contained in the von Neumann algebra of the groupoid of the quantum system. As a consequence of this, Sorkin's incidence theorem will be proved and some illustrative examples will be discussed.
本文利用受施温格量子力学图景启发的量子力学系统的群胚描述,开启了对因果性与量子力学之间关系的研究。在用一类特殊的子范畴(相应地称为因果范畴)识别群胚上的因果结构之后,将证明因果结构可以从量子系统群胚的冯·诺依曼代数中包含的一类特殊的非自伴代数(称为三角算子代数)中恢复出来。由此,将证明索尔金的关联定理,并讨论一些示例。