Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee.
Integrated Program in Biomedical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee.
Mol Cancer Res. 2021 Apr;19(4):636-650. doi: 10.1158/1541-7786.MCR-20-0586. Epub 2020 Dec 7.
Antiapoptotic is one of the most frequently amplified genes in human cancers and elevated expression confers resistance to many therapeutics including the BH3-mimetic agents ABT-199 and ABT-263. The antimalarial, dihydroartemisinin (DHA) translationally represses MCL-1 and synergizes with BH3-mimetics. To explore how DHA represses MCL-1, a genome-wide CRISPR screen identified that loss of genes in the heme synthesis pathway renders mouse BCR-ABL B-ALL cells resistant to DHA-induced death. Mechanistically, DHA disrupts the interaction between heme and the eIF2α kinase heme-regulated inhibitor (HRI) triggering the integrated stress response. Genetic ablation of , which encodes HRI, blocks MCL-1 repression in response to DHA treatment and represses the synergistic killing of DHA and BH3-mimetics compared with wild-type leukemia. Furthermore, BTdCPU, a small-molecule activator of HRI, similarly triggers MCL-1 repression and synergizes with BH3-mimetics in mouse and human leukemia including both Ph and Ph-like B-ALL. Finally, combinatorial treatment of leukemia bearing mice with both BTdCPU and a BH3-mimetic extended survival and repressed MCL-1 . These findings reveal for the first time that the HRI-dependent cellular heme-sensing pathway can modulate apoptosis in leukemic cells by repressing MCL-1 and increasing their responsiveness to BH3-mimetics. This signaling pathway could represent a generalizable mechanism for repressing MCL-1 expression in malignant cells and sensitizing them to available therapeutics. IMPLICATIONS: The HRI-dependent cellular heme-sensing pathway can modulate apoptotic sensitivity in leukemic cells by repressing antiapoptotic MCL-1 and increasing their responsiveness to BH3-mimetics.
抗凋亡是人类癌症中最常扩增的基因之一,其表达升高赋予了对许多治疗药物的耐药性,包括 BH3 模拟物 ABT-199 和 ABT-263。抗疟药物二氢青蒿素 (DHA) 通过翻译抑制 MCL-1 的表达并与 BH3 模拟物协同作用。为了探索 DHA 如何抑制 MCL-1,全基因组 CRISPR 筛选发现,血红素合成途径中基因的缺失使小鼠 BCR-ABL B-ALL 细胞对 DHA 诱导的死亡产生耐药性。从机制上讲,DHA 破坏了血红素与 eIF2α 激酶血红素调节抑制剂 (HRI) 之间的相互作用,触发了综合应激反应。编码 HRI 的基因的缺失会阻止 DHA 处理后 MCL-1 的抑制,并抑制 DHA 和 BH3 模拟物的协同杀伤作用,与野生型白血病相比。此外,HRI 的小分子激活剂 BTdCPU 也可在包括 Ph 和 Ph 样 B-ALL 在内的小鼠和人类白血病中触发 MCL-1 的抑制并与 BH3 模拟物协同作用。最后,在携带白血病的小鼠中联合使用 BTdCPU 和 BH3 模拟物可延长生存期并抑制 MCL-1 的表达。这些发现首次表明,HRI 依赖性细胞血红素感应途径可通过抑制 MCL-1 并增加白血病细胞对 BH3 模拟物的反应性来调节白血病细胞的凋亡。这种信号通路可能代表了在恶性细胞中抑制 MCL-1 表达并使其对现有治疗药物敏感的一种普遍机制。意义:HRI 依赖性细胞血红素感应途径可通过抑制抗凋亡的 MCL-1 并增加其对 BH3 模拟物的反应性来调节白血病细胞的凋亡敏感性。