Suppr超能文献

提高孟德尔疾病衍生致病性评分在常见疾病中的信息性。

Improving the informativeness of Mendelian disease-derived pathogenicity scores for common disease.

机构信息

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.

Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.

出版信息

Nat Commun. 2020 Dec 7;11(1):6258. doi: 10.1038/s41467-020-20087-2.

Abstract

Despite considerable progress on pathogenicity scores prioritizing variants for Mendelian disease, little is known about the utility of these scores for common disease. Here, we assess the informativeness of Mendelian disease-derived pathogenicity scores for common disease and improve upon existing scores. We first apply stratified linkage disequilibrium (LD) score regression to evaluate published pathogenicity scores across 41 common diseases and complex traits (average N = 320K). Several of the resulting annotations are informative for common disease, even after conditioning on a broad set of functional annotations. We then improve upon published pathogenicity scores by developing AnnotBoost, a machine learning framework to impute and denoise pathogenicity scores using a broad set of functional annotations. AnnotBoost substantially increases the informativeness for common disease of both previously uninformative and previously informative pathogenicity scores, implying that Mendelian and common disease variants share similar properties. The boosted scores also produce improvements in heritability model fit and in classifying disease-associated, fine-mapped SNPs. Our boosted scores may improve fine-mapping and candidate gene discovery for common disease.

摘要

尽管在基于致病性评分优先考虑孟德尔疾病变异方面取得了相当大的进展,但对于这些评分在常见疾病中的应用知之甚少。在这里,我们评估了孟德尔疾病衍生的致病性评分在常见疾病中的信息量,并对现有评分进行了改进。我们首先应用分层连锁不平衡(LD)评分回归来评估 41 种常见疾病和复杂特征(平均 N = 320K)的已发表致病性评分。即使在对广泛的功能注释进行条件处理后,其中一些注释对于常见疾病仍然是有信息的。然后,我们通过开发 AnnotBoost 来改进已发表的致病性评分,这是一种机器学习框架,可使用广泛的功能注释来推断和去噪致病性评分。AnnotBoost 极大地提高了以前无信息和以前有信息的致病性评分在常见疾病中的信息量,这意味着孟德尔和常见疾病变异具有相似的特性。增强后的评分还提高了遗传模型拟合度和疾病相关精细映射 SNP 的分类能力。我们的增强评分可能会改进常见疾病的精细映射和候选基因发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f16e/7721881/45f5446a57e8/41467_2020_20087_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验