Suppr超能文献

A cocrystal of L-ascorbic acid with picolinic acid: the role of O-H...O, N-H...O and C-H...O hydrogen bonds and L-ascorbic acid conformation in structure stabilization.

作者信息

Evtushenko Diana N, Arkhipov Sergey G, Fateev Alexander V, Izaak Tatyana I, Egorova Lidia A, Skorik Nina A, Vodyankina Olga V, Boldyreva Elena V

机构信息

National Research Tomsk State University, Lenin Ave. 36, Tomsk, 634050, Russian Federation.

Boreskov Institute of Catalysis SB RAS, Lavrentiev Ave. 5, Novosibirsk, 630090, Russian Federation.

出版信息

Acta Crystallogr B Struct Sci Cryst Eng Mater. 2020 Dec 1;76(Pt 6):967-978. doi: 10.1107/S2052520620012421. Epub 2020 Nov 3.

Abstract

A new 1:1 cocrystal (L-Asc-Pic) of L-ascorbic acid (vitamin C) with picolinic acid was prepared as a powder and as single crystals. The crystal structure was solved and refined from single-crystal X-ray diffraction (SCXRD) data collected at 293 (2) and 100 (2) K. The samples of the L-Asc-Pic cocrystal were characterized by elemental (HCNS) analysis and titrimetric methods, TG/DTG/DSC, and IR and Raman spectroscopy. The asymmetric unit comprises a picolinic acid zwitterion and an L-ascorbic acid molecule. The stabilization energy of intermolecular interactions involving hydrogen bonds, the vibrational spectrum and the energies of the frontier molecular orbitals were calculated using the GAUSSIAN09 and the CrystalExplorer17 programs. The charge distribution on the atoms of the L-Asc-Pic cocrystal, L-ascorbic acid itself and its 12 known cocrystals (structures from Version 5.40 of the Cambridge Structural Database) were calculated by the methods of Mulliken, Voronoi and Hirshfeld charge analyses (ADF) at the bp86/TZ2P+ level of theory. The total effective charges and conformations of the L-ascorbic acid molecules in the new and previously reported cocrystals were compared with those of the two symmetry-independent molecules in the crystals of L-ascorbic acid. A correlation between molecular conformation and its effective charge is discussed.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验