Zhang Heng, Zhang Peigen, Pan Long, He Wei, Qi Qi, Bao Zhuoheng, Yang Li, Zhang Wei, Barsoum Michel W, Sun ZhengMing
Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
Nanoscale. 2020 Dec 21;12(47):24196-24205. doi: 10.1039/d0nr06151d. Epub 2020 Dec 8.
Lithium-sulfur (Li-S) batteries are regarded as potential next-generation energy storage systems due to their high theoretical energy densities. However, the dissolution of lithium polysulfides (LiPSs) upon cycling can result in severe capacity degradation. Achieving high rate capabilities with good cycling stability remains a huge obstacle for the practical implementation of Li-S batteries. Here we developed a novel, multifunctional, hierarchical structure by self-assembling core-shell MnO nanorods @ hollow porous carbon with 2D TiCT nanosheets, labelled as MCT, as an efficient polysulfide mediator for Li-S cathodes. The integration of the polar MnO core and hollow porous carbon shell captures LiPSs two ways: physical confinement and chemisorption. The conductive TiCT nanosheets construct a continuous and conductive network, which not only promotes charge transfer and ion diffusion but also boosts LiPS adsorption and conversion. Based on these merits, the MCT/S cathode delivers good rate capability (688 mA h g at 2.0C) and outstanding long-term cyclability (0.044% capacity decay per cycle over 600 cycles at 2.0C).
锂硫(Li-S)电池因其高理论能量密度而被视为潜在的下一代储能系统。然而,多硫化锂(LiPSs)在循环过程中的溶解会导致严重的容量衰减。在实现高倍率性能的同时保持良好的循环稳定性,仍然是Li-S电池实际应用中的一个巨大障碍。在此,我们通过将核壳结构的MnO纳米棒@空心多孔碳与二维TiCT纳米片自组装,开发了一种新型的多功能分级结构,标记为MCT,作为Li-S正极的高效多硫化物介导剂。极性MnO核与空心多孔碳壳的结合通过两种方式捕获LiPSs:物理限制和化学吸附。导电的TiCT纳米片构建了一个连续的导电网络,不仅促进了电荷转移和离子扩散,还增强了LiPS的吸附和转化。基于这些优点,MCT/S正极具有良好的倍率性能(在2.0C下为688 mA h g)和出色的长期循环稳定性(在2.0C下600次循环中每循环容量衰减0.044%)。