Suppr超能文献

负载于亚纳米氧化物薄膜上的纳米颗粒:从模型系统到块状材料的尺度拓展

Nanoparticles Supported on Sub-Nanometer Oxide Films: Scaling Model Systems to Bulk Materials.

作者信息

Ament Kevin, Köwitsch Nicolas, Hou Dianwei, Götsch Thomas, Kröhnert Jutta, Heard Christopher J, Trunschke Annette, Lunkenbein Thomas, Armbrüster Marc, Breu Josef

机构信息

Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany.

Faculty of Natural Sciences, Institute of Chemistry, Materials for Innovative Energy Concepts, Chemnitz University of Technology, Straße der Nationen 62, 09111, Chemnitz, Germany.

出版信息

Angew Chem Int Ed Engl. 2021 Mar 8;60(11):5890-5897. doi: 10.1002/anie.202015138. Epub 2021 Jan 28.

Abstract

Ultrathin layers of oxides deposited on atomically flat metal surfaces have been shown to significantly influence the electronic structure of the underlying metal, which in turn alters the catalytic performance. Upscaling of the specifically designed architectures as required for technical utilization of the effect has yet not been achieved. Here, we apply liquid crystalline phases of fluorohectorite nanosheets to fabricate such architectures in bulk. Synthetic sodium fluorohectorite, a layered silicate, when immersed into water spontaneously and repulsively swells to produce nematic suspensions of individual negatively charged nanosheets separated to more than 60 nm, while retaining parallel orientation. Into these galleries oppositely charged palladium nanoparticles were intercalated whereupon the galleries collapse. Individual and separated Pd nanoparticles were thus captured and sandwiched between nanosheets. As suggested by the model systems, the resulting catalyst performed better in the oxidation of carbon monoxide than the same Pd nanoparticles supported on external surfaces of hectorite or on a conventional Al O support. XPS confirmed a shift of Pd 3d electrons to higher energies upon coverage of Pd nanoparticles with nanosheets to which we attribute the improved catalytic performance. DFT calculations showed increasing positive charge on Pd weakened CO adsorption and this way damped CO poisoning.

摘要

已证明沉积在原子级平整金属表面上的超薄氧化层会显著影响其下方金属的电子结构,进而改变催化性能。然而,尚未实现将这种效应按技术应用要求扩大规模。在此,我们应用氟代锂蒙脱石纳米片的液晶相来大规模制备此类结构。合成的氟代锂蒙脱石钠,一种层状硅酸盐,浸入水中时会自发且相互排斥地膨胀,形成单个带负电的纳米片的向列型悬浮液,这些纳米片彼此分离超过60纳米,同时保持平行取向。在这些层间插入带相反电荷的钯纳米颗粒,随后这些层会塌陷。这样,单个且分离的钯纳米颗粒就被捕获并夹在纳米片之间。正如模型系统所表明的,所得催化剂在一氧化碳氧化反应中的表现优于负载在锂蒙脱石外表面或传统氧化铝载体上的相同钯纳米颗粒。X射线光电子能谱(XPS)证实,当钯纳米颗粒被纳米片覆盖时,钯3d电子向更高能量移动,我们将催化性能的提高归因于此。密度泛函理论(DFT)计算表明,钯上正电荷的增加减弱了一氧化碳的吸附,从而抑制了一氧化碳中毒。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c8d/7986867/9aaa482abb86/ANIE-60-5890-g007.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验