Suppr超能文献

洛斯阿拉莫斯国家实验室钚生物测定数据的贝叶斯分析。

Bayesian Analysis of Plutonium Bioassay Data at Los Alamos National Laboratory.

作者信息

Poudel Deepesh, Miller Guthrie, Klumpp John A, Bertelli Luiz, Waters Tom L

机构信息

1Radiation Protection Division, Los Alamos National Laboratory, P.O. Box 1663, MS G761, Los Alamos, NM 87545; 2Los Alamos National Laboratory (retired), Santa Fe, NM.

出版信息

Health Phys. 2018 Dec;115(6):712-726. doi: 10.1097/HP.0000000000000933.

Abstract

The main concern of operational internal dosimetry is to detect intakes and estimate doses to the worker from a series of bioassay measurements. Although several methods are available, the inverse problem of internal dosimetry-i.e., determination of time, amount, and types of intake given a set of bioassay data-is well suited to a Bayesian approach. This paper summarizes the Bayesian methodology used at Los Alamos National Laboratory to detect intakes and estimate doses from plutonium bioassay measurements. Some advantages and disadvantages of the method are also discussed. The successful application of Bayesian methods for several years at Los Alamos National Laboratory, which monitors thousands of workers annually for plutonium, indicates that the methods can be extended to other facilities.

摘要

操作内照射剂量学的主要关注点是通过一系列生物测定测量来检测摄入量并估算工作人员所受剂量。尽管有多种方法可用,但内照射剂量学的逆问题,即给定一组生物测定数据确定摄入的时间、数量和类型,非常适合采用贝叶斯方法。本文总结了洛斯阿拉莫斯国家实验室用于从钚生物测定测量中检测摄入量和估算剂量的贝叶斯方法。还讨论了该方法的一些优缺点。贝叶斯方法在洛斯阿拉莫斯国家实验室成功应用了数年,该实验室每年监测数千名工作人员的钚摄入量,这表明这些方法可以推广到其他设施。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验