Madawala Hiranya, Sabaragamuwe Shashika Gunathilaka, Elangovan Subhashini, Kim Jiyeon
Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881, United States.
Anal Chem. 2021 Jan 19;93(2):1154-1160. doi: 10.1021/acs.analchem.0c04205. Epub 2020 Dec 8.
We report a new application of the single-entity electrochemistry (SEE) to in situ measure a partition coefficient at intact nanoemulsions (NEs). The partition coefficient at intact NEs is the most crucial physicochemical property to determine the uptake of delivery molecules inside NEs. It, however, has not been unequivocally elucidated by currently existing techniques based on ex situ measurements. Herein, we apply the single-entity electrochemistry (SEE) to directly and quantitatively measure the partition coefficient at NEs in situ. In this work, we use NEs featured with amphiphilic triblock copolymer (Pluronic F-127) as a model system to extract/preconcentrate 2-aminobiphenyl (2-ABP) dissolved in the water and demonstrate a new application of SEE to in situ quantitatively estimate the amounts of 2-ABP distributed into each intact NE. Our SEE measurements reveal that the partitioning is governed by extraction of 2-ABP inside NEs rather than its adsorption on the NE surface, and this extraction is remarkably efficient with up to ∼8 orders of magnitude of the preconcentration factor, thus leading to the unprecedentedly large partition coefficient of 1.9 (±1.4) × 10. This result implies that not only the thermodynamic distribution but also the intermolecular interaction of extracted compounds inside NEs could play a significant role in the apparent partition coefficient ( = 1.9 (±1.4) × 10). The experimentally determined partition coefficient was validated by molecular dynamics (MD) simulations with showing a stabilizing role of intermolecular interaction in the partitioned system. We further verified our methodology with other compounds exhibiting aromatic properties, e.g., ferrocenemethanol. Significantly, our new approach can be readily applicable to investigate practical NEs commercially marketed for drug, food, and cosmetics.
我们报道了单实体电化学(SEE)在原位测量完整纳米乳液(NE)分配系数方面的新应用。完整NE的分配系数是决定递送分子在NE内摄取的最关键物理化学性质。然而,目前基于非原位测量的现有技术尚未明确阐明这一性质。在此,我们应用单实体电化学(SEE)直接和定量地原位测量NE的分配系数。在这项工作中,我们使用以两亲性三嵌段共聚物(普朗尼克F - 127)为特征的NE作为模型系统,以萃取/预浓缩溶解在水中的2 - 氨基联苯(2 - ABP),并展示了SEE在原位定量估计分配到每个完整NE中的2 - ABP量的新应用。我们的SEE测量结果表明,分配过程受2 - ABP在NE内的萃取而非其在NE表面的吸附控制,并且这种萃取效率非常高,预浓缩因子高达约8个数量级,从而导致前所未有的大分配系数1.9(±1.4)×10。这一结果表明,不仅热力学分布,而且NE内萃取化合物的分子间相互作用在表观分配系数( = 1.9(±1.4)×10)中都可能起重要作用。通过分子动力学(MD)模拟验证了实验测定的分配系数,模拟结果显示分子间相互作用在分配系统中具有稳定作用。我们还用其他具有芳香性质的化合物,如二茂铁甲醇,进一步验证了我们的方法。重要的是,我们的新方法可很容易地应用于研究市售的用于药物、食品和化妆品的实际NE。