Suppr超能文献

辣椒属辣椒种墨西哥辣椒的实验品种:通过核磁共振氢谱/机器学习进行化学表征和分类

Experimental races of Capsicum annuum cv. jalapeño: Chemical characterization and classification by H NMR/machine learning.

作者信息

Ramírez-Meraz Moisés, Méndez-Aguilar Reinaldo, Hidalgo-Martínez Diego, Villa-Ruano Nemesio, Zepeda-Vallejo L Gerardo, Vallejo-Contreras Fernando, Hernández-Guerrero Claudia J, Becerra-Martínez Elvia

机构信息

INIFAP-Campo Experimental Las Huastecas, Km 55 Carretera Tampico-Mante, Cuauhtémoc, Tamaulipas CP 89610, Mexico.

Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, MC-3102, Berkeley, CA 94720-3102, USA.

出版信息

Food Res Int. 2020 Dec;138(Pt A):109763. doi: 10.1016/j.foodres.2020.109763. Epub 2020 Oct 2.

Abstract

This work reports on the metabolic fingerprinting of ten new races of Capsicum annuum cv. jalapeño using H NMR based metabolomics coupled to machine learning projections. Ten races were classified and evaluated according to their differential metabolites, variables of commercial interest and by multivariate data analysis/machine learning algorithm. According to our results, experimental races of jalapeño peppers exhibited differences in carbohydrate, amino acid, nucleotide and organic acid contents. Forty-eight metabolites were identified by 1D and 2D NMR and the differential metabolites were quantified by qNMR. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) separated the studied races into two groups. The group A included the races Colosus, Emperador, Fundador and Rayo whereas the group B included the races Don Benito, SMJ 1416, SMJ 1417, SMJ 1423, SMJ 145 and STAM J0904. OPLS-DA revealed that levels of citric acid in group A were higher than in group B, while the levels of asparagine, fumaric acid, GABA, glucose, malic acid, pyruvic, quinic acid, sucrose and tryptophan were higher in the group B. Remarkably, ascorbic acid was exclusively found in the race Colosus. Random forest model revealed the diversity of the experimental races and the similarity rate with the well-established races. The most relevant variables used to generate a model were length, weight, yield, width, xylose content and organic acids content.

摘要

这项工作报道了使用基于氢核磁共振的代谢组学结合机器学习预测方法,对辣椒(Capsicum annuum cv. jalapeño)十个新变种进行代谢指纹分析的结果。根据其差异代谢物、商业相关变量以及多变量数据分析/机器学习算法,对这十个变种进行了分类和评估。根据我们的结果,墨西哥胡椒的实验变种在碳水化合物、氨基酸、核苷酸和有机酸含量上表现出差异。通过一维和二维核磁共振鉴定出48种代谢物,并通过定量核磁共振对差异代谢物进行了定量分析。主成分分析(PCA)和正交偏最小二乘判别分析(OPLS-DA)将所研究的变种分为两组。A组包括Colosus、Emperador、Fundador和Rayo变种,而B组包括Don Benito、SMJ 1416、SMJ 1417、SMJ 1423、SMJ 145和STAM J0904变种。OPLS-DA显示,A组柠檬酸水平高于B组,而B组天冬酰胺、富马酸、γ-氨基丁酸、葡萄糖、苹果酸、丙酮酸、奎尼酸、蔗糖和色氨酸水平更高。值得注意的是,抗坏血酸仅在Colosus变种中发现。随机森林模型揭示了实验变种的多样性以及与已确立变种的相似度。用于生成模型的最相关变量是长度、重量、产量、宽度、木糖含量和有机酸含量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验