Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia; Australian Institute of Marine Science, Townsville, QLD, Australia.
Department of Natural Resources and Environmental Science, University of Nevada Reno, Reno, NV, United States.
Adv Mar Biol. 2020;87(1):259-290. doi: 10.1016/bs.amb.2020.09.001.
Outbreaks of the Pacific crown-of-thorns starfish (COTS; Acanthaster cf. solaris) have been responsible for 40% of the decline in coral cover on the GBR over the last 35 years. With the intensity and frequency of bleaching and cyclonic disturbances increasing, effectively managing these outbreaks may allow reefs an opportunity to recover from these cumulative impacts. Significant research effort has been directed toward developing regional scale models for COTS outbreaks, but these have yet to be fit explicitly to long term time series at the scale of the entire GBR, nor do previous research efforts incorporate explicit estimates of cumulative disturbance history. We developed a stage-based metapopulation model for COTS at a 1×1km resolution using long-term time series and modelled estimates of COTS larval connectivity, nutrient concentrations and important vital rates estimated from the literature. We coupled this metapopulation model to an existing spatially explicit model of coral cover growth, disturbance and recovery across the GBR from 1996 to 2017 to create a metacommunity model. Our results were validated against a spatially and temporally extensive dataset of COTS and coral cover across the GBR, predicting an average coral decline of 1.3% p.a. across the GBR, and accurately recreating coral cover trajectories (mean prediction error=7.1%) and COTS outbreak classification (accuracy=80%). Sensitivity analyses revealed that overall model accuracy was most sensitive to larval predation (boosted regression tree; relative importance=46.7%) and two parameters defining juvenile density dependent mortality (21.5% and 17.5%). The COTS model underestimated peak COTS densities particularly in the Swains and Townsville sectors of the reef, while overestimating COTS density during non-outbreak years. A better understanding of inter-annual variability in larval connectivity, and regionally variable density dependence for adult COTS life stages may improve model fit during these extreme outbreak events. Our model provides a platform to develop upon, and with improvements to estimates of larval connectivity and larval predation could be used to simulate the effects of implementing varying combinations of COTS interventions. This research highlights the importance of the early life history stages of COTS as drivers of outbreak dynamics, emphasizing the need for further empirical research to estimate these parameters.
过去 35 年来,棘冠海星(Acanthaster cf. solaris)的爆发导致大堡礁的珊瑚覆盖率减少了 40%。随着白化和旋风干扰的强度和频率的增加,有效管理这些爆发事件可能会为珊瑚礁提供从这些累积影响中恢复的机会。大量的研究工作致力于开发棘冠海星爆发的区域尺度模型,但这些模型尚未明确适用于整个大堡礁的长期时间序列,以前的研究工作也没有纳入累积干扰历史的明确估计。我们使用长期时间序列和从文献中估计的棘冠海星幼虫连通性、营养浓度和重要生命率数据,在 1×1km 的分辨率下,为棘冠海星开发了一个基于阶段的复合种群模型。我们将这个复合种群模型与一个现有的、基于空间的珊瑚覆盖生长、干扰和恢复的模型相结合,该模型覆盖了大堡礁 1996 年至 2017 年的数据,创建了一个复合群落模型。我们的结果与大堡礁广泛的棘冠海星和珊瑚覆盖时空数据集进行了验证,预测大堡礁的珊瑚覆盖率平均每年下降 1.3%,并准确地再现了珊瑚覆盖轨迹(平均预测误差=7.1%)和棘冠海星爆发的分类(准确率=80%)。敏感性分析表明,整体模型的准确性对幼虫捕食(提升回归树;相对重要性=46.7%)和定义幼体密度依赖性死亡率的两个参数(21.5%和 17.5%)最敏感。棘冠海星模型尤其低估了斯旺和汤斯维尔地区的棘冠海星密度峰值,同时高估了非爆发年份的棘冠海星密度。更好地了解幼虫连通性的年际变化,以及成年棘冠海星生活阶段在区域上的可变密度依赖性,可能会提高模型在这些极端爆发事件中的拟合度。我们的模型为进一步发展提供了一个平台,并可以通过改进幼虫连通性的估计和幼虫捕食的估计,来模拟实施不同棘冠海星干预措施组合的效果。这项研究强调了棘冠海星早期生活史阶段作为爆发动态驱动因素的重要性,强调需要进一步进行实证研究来估计这些参数。