Suppr超能文献

用于在大气等离子喷涂过程中寻找实现平均颗粒温度和轴向速度的最佳输入参数的数值技术。

Numerical techniques to find optimal input parameters for achieving mean particles' temperature and axial velocity in atmospheric plasma spray process.

作者信息

Batra R C, Taetragool Unchalisa

机构信息

Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.

Department of Computer Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.

出版信息

Sci Rep. 2020 Dec 8;10(1):21483. doi: 10.1038/s41598-020-78424-w.

Abstract

We numerically find values of four process input parameters, namely, the argon flow rate, the hydrogen flow rate, the powder feed rate, and the current, that yield the desired mean particles' temperature and the mean particle velocity (collectively called mean particles' characteristics, or MPCs) in an atmospheric plasma spray process just before the particles arrive at the substrate to be coated. Previous studies have shown that the coating quality depends upon the MPCs. The process is simulated by using the software, LAVA-P-3D, that provides MPCs close to their experimental values. Thus, numerical rather than physical experiments are conducted. We first use the design of experiments to characterize the sensitivity of the MPCs to process parameters. We then identify relationships between the significant input parameters and the MPCs by using two methods, namely, the least squares regression and the response surface methodology (RSM). Finally, we employ an optimization algorithm in conjunction with the weighted sum method to find optimum values of the process input variables to achieve desired values of the MPCs. The effects of weights assigned to the objective functions for the temperature and the velocity, and the difference in using the regression and the RSM model have been studied. It is found that these values of the process parameters provide MPCs within 5% of their desired values. This methodology is applicable to other coating processes and fabrication technologies such as hot forging, machining and casting.

摘要

我们通过数值计算得出四个工艺输入参数的值,即氩气流量、氢气流量、粉末进料速率和电流,这些参数能在大气等离子喷涂过程中,使颗粒在到达待涂覆基材之前达到所需的平均颗粒温度和平均颗粒速度(统称为平均颗粒特性,或MPC)。先前的研究表明,涂层质量取决于MPC。该工艺使用软件LAVA-P-3D进行模拟,该软件提供的MPC接近其实验值。因此,进行的是数值实验而非物理实验。我们首先使用实验设计来表征MPC对工艺参数的敏感性。然后,我们使用两种方法,即最小二乘回归和响应面方法(RSM),来确定显著输入参数与MPC之间的关系。最后,我们结合加权和法使用优化算法来找到工艺输入变量的最佳值,以实现MPC的期望值。研究了分配给温度和速度目标函数的权重的影响,以及使用回归模型和RSM模型的差异。结果发现,这些工艺参数值提供的MPC在其期望值的5%以内。这种方法适用于其他涂层工艺和制造技术,如热锻、机械加工和铸造。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abbe/7722870/eeb10d1811c2/41598_2020_78424_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验