文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

微生物组富集分析有助于对微生物组分析数据进行功能解释。

Microbe-set enrichment analysis facilitates functional interpretation of microbiome profiling data.

机构信息

Xbiome, Scientific Research Building, Room 907, Tsinghua High-Tech Park, Shenzhen, China.

CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.

出版信息

Sci Rep. 2020 Dec 8;10(1):21466. doi: 10.1038/s41598-020-78511-y.


DOI:10.1038/s41598-020-78511-y
PMID:33293650
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7722755/
Abstract

The commensal microbiome is known to influence a variety of host phenotypes. Microbiome profiling followed by differential abundance analysis has been established as an effective approach to study the mechanisms of host-microbiome interactions. However, it is challenging to interpret the collective functions of the resultant microbe-sets due to the lack of well-organized functional characterization of commensal microbiome. We developed microbe-set enrichment analysis (MSEA) to enable the functional interpretation of microbe-sets by examining the statistical significance of their overlaps with annotated groups of microbes that share common attributes such as biological function or phylogenetic similarity. We then constructed microbe-set libraries by query PubMed to find microbe-mammalian gene associations and disease associations by parsing the Disbiome database. To demonstrate the utility of our novel MSEA methodology, we carried out three case studies using publicly available curated knowledge resource and microbiome profiling datasets focusing on human diseases. We found MSEA not only yields consistent findings with the original studies, but also recovers insights about disease mechanisms that are supported by the literature. Overall, MSEA is a useful knowledge-based computational approach to interpret the functions of microbes, which can be integrated with microbiome profiling pipelines to help reveal the underlying mechanism of host-microbiome interactions.

摘要

共生微生物组已知会影响宿主的多种表型。微生物组谱分析和差异丰度分析已被确立为研究宿主-微生物相互作用机制的有效方法。然而,由于共生微生物组缺乏组织良好的功能特征描述,因此很难解释由此产生的微生物组集合的集体功能。我们开发了微生物组集合富集分析(MSEA),通过检查与具有共同属性(如生物学功能或系统发育相似性)的微生物组注释组重叠的统计学显著性,来实现对微生物组集合的功能解释。然后,我们通过查询 PubMed 构建了微生物组集合库,通过解析 Disbiome 数据库,找到了微生物-哺乳动物基因关联和疾病关联。为了展示我们新的 MSEA 方法的实用性,我们使用了三个公开的、经过整理的知识库和微生物组谱数据集进行了案例研究,这些数据集主要关注人类疾病。我们发现,MSEA 不仅与原始研究的结果一致,而且还可以从文献中获取支持疾病机制的新见解。总的来说,MSEA 是一种基于知识的有用计算方法,可以解释微生物的功能,它可以与微生物组谱分析管道集成,以帮助揭示宿主-微生物组相互作用的潜在机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f5b/7722755/ebeff060085c/41598_2020_78511_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f5b/7722755/a24eac9c568e/41598_2020_78511_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f5b/7722755/25cd3e08e0ef/41598_2020_78511_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f5b/7722755/99d8745684a6/41598_2020_78511_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f5b/7722755/b70092abe509/41598_2020_78511_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f5b/7722755/ebeff060085c/41598_2020_78511_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f5b/7722755/a24eac9c568e/41598_2020_78511_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f5b/7722755/25cd3e08e0ef/41598_2020_78511_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f5b/7722755/99d8745684a6/41598_2020_78511_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f5b/7722755/b70092abe509/41598_2020_78511_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f5b/7722755/ebeff060085c/41598_2020_78511_Fig5_HTML.jpg

相似文献

[1]
Microbe-set enrichment analysis facilitates functional interpretation of microbiome profiling data.

Sci Rep. 2020-12-8

[2]
Huanglongbing impairs the rhizosphere-to-rhizoplane enrichment process of the citrus root-associated microbiome.

Microbiome. 2017-8-10

[3]
Microbe-microbe and host-microbe interactions drive microbiome dysbiosis and inflammatory processes.

Discov Med. 2017-1

[4]
MicrobiomeAnalyst: a web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data.

Nucleic Acids Res. 2017-7-3

[5]
Moving beyond microbiome-wide associations to causal microbe identification.

Nature. 2017-12-6

[6]
Analysis of gut microbiota profiles and microbe-disease associations in children with autism spectrum disorders in China.

Sci Rep. 2018-9-18

[7]
Ecophylogenetics Clarifies the Evolutionary Association between Mammals and Their Gut Microbiota.

mBio. 2018-9-11

[8]
Biodiversity and functional genomics in the human microbiome.

Trends Genet. 2012-11-7

[9]
Microbial Hub Taxa Link Host and Abiotic Factors to Plant Microbiome Variation.

PLoS Biol. 2016-1-20

[10]
The oral microbiome of early stage Parkinson's disease and its relationship with functional measures of motor and non-motor function.

PLoS One. 2019-6-27

引用本文的文献

[1]
GeneHarmony: A Knowledge-Based Tool for Biomarker Discovery in Disease: Sjögren's Disease vs. Rheumatoid Arthritis and Systemic Lupus Erythematosus.

Int J Mol Sci. 2025-7-2

[2]
TaxSEA: rapid interpretation of microbiome alterations using taxon set enrichment analysis and public databases.

Brief Bioinform. 2025-3-4

[3]
Microbiota of healthy dogs demonstrate a significant decrease in richness and changes in specific bacterial groups in response to supplementation with resistant starch, but not psyllium or methylcellulose, in a randomized cross-over trial.

Access Microbiol. 2024-5-14

[4]
Addressing erroneous scale assumptions in microbe and gene set enrichment analysis.

PLoS Comput Biol. 2023-11

[5]
BugSigDB captures patterns of differential abundance across a broad range of host-associated microbial signatures.

Nat Biotechnol. 2024-5

[6]
Total RNA sequencing reveals gene expression and microbial alterations shared by oral pre-malignant lesions and cancer.

Hum Genomics. 2023-8-4

[7]
Characteristics of gut microbiota in patients with metabolic associated fatty liver disease.

Sci Rep. 2023-6-20

[8]
Candida expansion in the gut of lung cancer patients associates with an ecological signature that supports growth under dysbiotic conditions.

Nat Commun. 2023-5-9

[9]
CDEMI: Characterizing differences in microbial composition and function in microbiome data.

Comput Struct Biotechnol J. 2023-3-25

[10]
Total RNA sequencing reveals gene expression and microbial alterations shared by oral pre-malignant lesions and cancer.

bioRxiv. 2023-3-24

本文引用的文献

[1]
Personalized Mapping of Drug Metabolism by the Human Gut Microbiome.

Cell. 2020-6-25

[2]
Plasma FABP4 is associated with liver disease recovery during treatment-induced clearance of chronic HCV infection.

Sci Rep. 2020-2-7

[3]
Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data.

Nat Protoc. 2020-1-15

[4]
Gut Microbiota Has a Widespread and Modifiable Effect on Host Gene Regulation.

mSystems. 2019-9-3

[5]
Lipoprotein Lipase Up-regulation in Hepatic Stellate Cells Exacerbates Liver Fibrosis in Nonalcoholic Steatohepatitis in Mice.

Hepatol Commun. 2019-6-6

[6]
Geneshot: search engine for ranking genes from arbitrary text queries.

Nucleic Acids Res. 2019-7-2

[7]
Design, implementation, and operation of a rapid, robust named entity recognition web service.

J Cheminform. 2019-3-8

[8]
Qiita: rapid, web-enabled microbiome meta-analysis.

Nat Methods. 2018-10-1

[9]
The Human Gut Microbiome - A Potential Controller of Wellness and Disease.

Front Microbiol. 2018-8-14

[10]
Disbiome database: linking the microbiome to disease.

BMC Microbiol. 2018-6-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索