Prunier Jérôme G, Poesy Camille, Dubut Vincent, Veyssière Charlotte, Loot Géraldine, Poulet Nicolas, Blanchet Simon
Centre National de la Recherche Scientifique (CNRS) Université Paul Sabatier (UPS) UMR 5321 Station d'Ecologie Théorique et Expérimentale Moulis France.
CNRS IRD Avignon Université IMBE Aix Marseille Univ Marseille Université France.
Evol Appl. 2020 Jul 28;13(10):2566-2581. doi: 10.1111/eva.13044. eCollection 2020 Dec.
Fragmentation by artificial barriers is an important threat to freshwater biodiversity. Mitigating the negative aftermaths of fragmentation is of crucial importance, and it is now essential for environmental managers to benefit from a precise estimate of the individual impact of weirs and dams on river connectivity. Although the indirect monitoring of fragmentation using molecular data constitutes a promising approach, it is plagued with several constraints preventing a standardized quantification of barrier effects. Indeed, observed levels of genetic differentiation depend on both the age of the obstacle and the effective size of the populations it separates, making comparisons of the actual barrier effect of different obstacles difficult. Here, we developed a standardized genetic index of fragmentation ( ), allowing an absolute and independent assessment of the individual effects of obstacles on connectivity. The is the standardized ratio between the observed between pairs of populations located on either side of an obstacle and the expected if this obstacle completely prevented gene flow. The expected is calculated from simulations taking into account two parameters: the number of generations since barrier creation and the expected heterozygosity of the populations, a proxy for effective population size. Using both simulated and empirical datasets, we explored the validity and the limits of the . We demonstrated that it allows quantifying effects of fragmentation only from a few generations after barrier creation and provides valid comparisons among obstacles of different ages and populations (or species) of different effective sizes. The requires a minimum amount of fieldwork and genotypic data and solves some of the difficulties inherent to the study of artificial fragmentation in rivers and potentially in other ecosystems. This makes the promising to support the management of freshwater species affected by barriers, notably for planning and evaluating restoration programs.
人工屏障造成的碎片化是对淡水生物多样性的一个重要威胁。减轻碎片化带来的负面影响至关重要,对于环境管理者来说,现在必须从精确估计堰坝对河流连通性的个体影响中受益。尽管利用分子数据对碎片化进行间接监测是一种很有前景的方法,但它存在一些限制,阻碍了对屏障效应进行标准化量化。事实上,观察到的遗传分化水平既取决于障碍物的存在时间,也取决于其分隔的种群的有效大小,这使得比较不同障碍物的实际屏障效应变得困难。在此,我们开发了一种标准化的碎片化遗传指数( ),能够对障碍物对连通性的个体效应进行绝对且独立的评估。该指数是位于障碍物两侧的种群对之间观察到的 与如果该障碍物完全阻止基因流动时预期的 的标准化比率。预期的 是通过模拟计算得出的,其中考虑了两个参数:自屏障形成以来的世代数以及种群的预期杂合度,后者是有效种群大小的一个替代指标。我们使用模拟数据集和实证数据集,探索了该指数的有效性和局限性。我们证明,它仅在屏障形成后的几代就能量化碎片化效应,并能对不同年龄的障碍物以及不同有效大小的种群(或物种)进行有效比较。该指数所需的野外工作和基因型数据量最少,并解决了河流以及可能其他生态系统中人工碎片化研究固有的一些困难。这使得该指数有望为受屏障影响的淡水物种的管理提供支持,特别是在规划和评估恢复项目方面。