Liu Bailing, Hu Bo, Du Jing, Cheng Dongming, Zang Hong-Ying, Ge Xin, Tan Huaqiao, Wang Yonghui, Duan Xiaozheng, Jin Zhao, Zhang Wei, Li Yangguang, Su Zhongmin
Key Lab of Polyoxometalate Science of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalys, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
Jinlin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology Changchun, Changchun, Jilin, 130024, P. R. China.
Angew Chem Int Ed Engl. 2021 Mar 8;60(11):6076-6085. doi: 10.1002/anie.202012079. Epub 2021 Jan 28.
Fabricating proton exchange membranes (PEMs) with high ionic conductivity and ideal mechanical robustness through regulation of the membrane microstructures achieved by molecular-level hybridization remains essential but challenging for the further development of high-performance PEM fuel cells. In this work, by precisely hybridizing nano-scaled bismuth oxide clusters into Nafion, we have fabricated the high-performance hybrid membrane, Nafion-Bi -3 %, which showed a proton conductivity of 386 mS cm at 80 °C in aqueous solution with low methanol permeability, and conserved the ideal mechanical and chemical stabilities as PEMs. Moreover, molecular dynamics (MD) simulation was employed to clarify the structural properties and the assembly mechanisms of the hybrid membrane on the molecular level. The maximum current density and power density of Nafion-Bi -3 % for direct methanol fuel cells reached to 432.7 mA cm and 110.2 mW cm , respectively. This work provides new insights into the design of versatile functional polymer electrolyte membranes through polyoxometalate hybridization.
通过分子水平杂交调控膜微观结构来制备具有高离子传导率和理想机械强度的质子交换膜(PEMs),对于高性能PEM燃料电池的进一步发展而言仍然至关重要且具有挑战性。在这项工作中,通过将纳米级氧化铋簇精确地杂交到Nafion中,我们制备了高性能的混合膜Nafion-Bi -3%,该膜在80°C的水溶液中表现出386 mS cm的质子传导率,甲醇渗透率低,并且作为PEMs保留了理想的机械和化学稳定性。此外,采用分子动力学(MD)模拟在分子水平上阐明了混合膜的结构特性和组装机制。Nafion-Bi -3%用于直接甲醇燃料电池的最大电流密度和功率密度分别达到432.7 mA cm和110.2 mW cm。这项工作通过多金属氧酸盐杂交为多功能功能性聚合物电解质膜的设计提供了新的见解。