Suppr超能文献

纵向多变量规范比较。

Longitudinal multivariate normative comparisons.

作者信息

Wang Zheng, Cheng Yu, Seaberg Eric C, Rubin Leah H, Levine Andrew J, Becker James T

机构信息

Department of Statistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

出版信息

Stat Med. 2021 Mar 15;40(6):1440-1452. doi: 10.1002/sim.8850. Epub 2020 Dec 9.

Abstract

Motivated by the Multicenter AIDS Cohort Study (MACS), we develop classification procedures for cognitive impairment based on longitudinal measures. To control family-wise error, we adapt the cross-sectional multivariate normative comparisons (MNC) method to the longitudinal setting. The cross-sectional MNC was proposed to control family-wise error by measuring the distance between multiple domain scores of a participant and the norms of healthy controls and specifically accounting for intercorrelations among all domain scores. However, in a longitudinal setting where domain scores are recorded multiple times, applying the cross-sectional MNC at each visit will still have inflated family-wise error rate due to multiple testing over repeated visits. Thus, we propose longitudinal MNC procedures that are constructed based on multivariate mixed effects models. A test procedure is adapted from the cross-sectional MNC to classify impairment on longitudinal multivariate normal data. Meanwhile, a permutation procedure is proposed to handle skewed data. Through simulations we show that our methods can effectively control family-wise error at a predetermined level. A dataset from a neuropsychological substudy of the MACS is used to illustrate the applications of our proposed classification procedures.

摘要

受多中心艾滋病队列研究(MACS)的启发,我们基于纵向测量开发了认知障碍的分类程序。为了控制家族性错误率,我们将横断面多元规范比较(MNC)方法应用于纵向研究。横断面MNC方法是通过测量参与者多个领域得分与健康对照规范之间的距离,并特别考虑所有领域得分之间的相互关系来控制家族性错误率。然而,在纵向研究中,领域得分会被多次记录,由于在重复访视中进行多次检验,在每次访视时应用横断面MNC仍会使家族性错误率膨胀。因此,我们提出了基于多元混合效应模型构建的纵向MNC程序。一种检验程序是从横断面MNC改编而来,用于对纵向多元正态数据进行损伤分类。同时,提出了一种置换程序来处理偏态数据。通过模拟,我们表明我们的方法可以在预定水平上有效地控制家族性错误率。MACS神经心理学子研究的一个数据集用于说明我们提出的分类程序的应用。

相似文献

1
Longitudinal multivariate normative comparisons.纵向多变量规范比较。
Stat Med. 2021 Mar 15;40(6):1440-1452. doi: 10.1002/sim.8850. Epub 2020 Dec 9.
2
Dynamic impairment classification through arrayed comparisons.通过排列比较进行动态损伤分类。
Stat Med. 2023 Jan 15;42(1):52-67. doi: 10.1002/sim.9601. Epub 2022 Nov 1.
9
Normative data for the Fototest from neurological patients with no cognitive impairment.神经认知正常患者的 Fototest 常模数据。
Neurologia (Engl Ed). 2022 Jan-Feb;37(1):45-52. doi: 10.1016/j.nrleng.2018.03.001. Epub 2020 Feb 7.

本文引用的文献

5
The analysis of multivariate longitudinal data: a review.多变量纵向数据分析:综述。
Stat Methods Med Res. 2014 Feb;23(1):42-59. doi: 10.1177/0962280212445834. Epub 2012 Apr 20.
7
Updated research nosology for HIV-associated neurocognitive disorders.人类免疫缺陷病毒相关神经认知障碍的更新研究分类学
Neurology. 2007 Oct 30;69(18):1789-99. doi: 10.1212/01.WNL.0000287431.88658.8b. Epub 2007 Oct 3.
8
Multivariate normative comparisons.多变量规范比较。
Neuropsychologia. 2007 Jun 18;45(11):2534-42. doi: 10.1016/j.neuropsychologia.2007.03.011. Epub 2007 Mar 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验