Suppr超能文献

从认知负荷角度看网络可视化的可扩展性

Scalability of Network Visualisation from a Cognitive Load Perspective.

作者信息

Yoghourdjian Vahan, Yang Yalong, Dwyer Tim, Lawrence Lee, Wybrow Michael, Marriott Kim

出版信息

IEEE Trans Vis Comput Graph. 2021 Feb;27(2):1677-1687. doi: 10.1109/TVCG.2020.3030459. Epub 2021 Jan 28.

Abstract

Node-link diagrams are widely used to visualise networks. However, even the best network layout algorithms ultimately result in 'hairball' visualisations when the graph reaches a certain degree of complexity, requiring simplification through aggregation or interaction (such as filtering) to remain usable. Until now, there has been little data to indicate at what level of complexity node-link diagrams become ineffective or how visual complexity affects cognitive load. To this end, we conducted a controlled study to understand workload limits for a task that requires a detailed understanding of the network topology-finding the shortest path between two nodes. We tested performance on graphs with 25 to 175 nodes with varying density. We collected performance measures (accuracy and response time), subjective feedback, and physiological measures (EEG, pupil dilation, and heart rate variability). To the best of our knowledge this is the first network visualisation study to include physiological measures. Our results show that people have significant difficulty finding the shortest path in high density node-link diagrams with more than 50 nodes and even low density graphs with more than 100 nodes. From our collected EEG data we observe functional differences in brain activity between hard and easy tasks. We found that cognitive load increased up to certain level of difficulty after which it decreased, likely because participants had given up. We also explored the effects of global network layout features such as size or number of crossings, and features of the shortest path such as length or straightness on task difficulty. We found that global features generally had a greater impact than those of the shortest path.

摘要

节点链接图被广泛用于可视化网络。然而,当图表达到一定程度的复杂性时,即使是最好的网络布局算法最终也会产生“一团乱麻”的可视化效果,这就需要通过聚合或交互(如过滤)进行简化,以保持其可用性。到目前为止,几乎没有数据表明节点链接图在何种复杂程度下会变得无效,或者视觉复杂性如何影响认知负荷。为此,我们进行了一项对照研究,以了解一项需要详细了解网络拓扑结构的任务(即找到两个节点之间的最短路径)的工作量限制。我们在具有不同密度的包含25到175个节点的图表上测试了性能。我们收集了性能指标(准确性和响应时间)、主观反馈以及生理指标(脑电图、瞳孔扩张和心率变异性)。据我们所知,这是第一项纳入生理指标的网络可视化研究。我们的结果表明,人们在节点数超过50个的高密度节点链接图以及节点数超过100个的低密度图表中寻找最短路径时存在显著困难。从我们收集的脑电图数据中,我们观察到了困难任务和简单任务之间大脑活动的功能差异。我们发现,认知负荷在达到一定难度水平之前会增加,之后会下降,这可能是因为参与者放弃了。我们还探讨了全局网络布局特征(如大小或交叉数)以及最短路径特征(如长度或直线度)对任务难度的影响。我们发现全局特征通常比最短路径特征的影响更大。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验