Sun Jinlin, He Haibo, Yi Jianqiang, Pu Zhiqiang
IEEE Trans Cybern. 2022 Jul;52(7):6809-6821. doi: 10.1109/TCYB.2020.3032096. Epub 2022 Jul 4.
This article presents a new command-filtered composite adaptive neural control scheme for uncertain nonlinear systems. Compared with existing works, this approach focuses on achieving finite-time convergent composite adaptive control for the higher-order nonlinear system with unknown nonlinearities, parameter uncertainties, and external disturbances. First, radial basis function neural networks (NNs) are utilized to approximate the unknown functions of the considered uncertain nonlinear system. By constructing the prediction errors from the serial-parallel nonsmooth estimation models, the prediction errors and the tracking errors are fused to update the weights of the NNs. Afterward, the composite adaptive neural backstepping control scheme is proposed via nonsmooth command filter and adaptive disturbance estimation techniques. The proposed control scheme ensures that high-precision tracking performances and NN approximation performances can be achieved simultaneously. Meanwhile, it can avoid the singularity problem in the finite-time backstepping framework. Moreover, it is proved that all signals in the closed-loop control system can be convergent in finite time. Finally, simulation results are given to illustrate the effectiveness of the proposed control scheme.
本文提出了一种用于不确定非线性系统的新型指令滤波复合自适应神经控制方案。与现有工作相比,该方法专注于为具有未知非线性、参数不确定性和外部干扰的高阶非线性系统实现有限时间收敛的复合自适应控制。首先,利用径向基函数神经网络(NNs)来逼近所考虑的不确定非线性系统的未知函数。通过从串并联非光滑估计模型构建预测误差,将预测误差和跟踪误差融合以更新神经网络的权重。随后,通过非光滑指令滤波和自适应干扰估计技术提出了复合自适应神经反步控制方案。所提出的控制方案确保能够同时实现高精度跟踪性能和神经网络逼近性能。同时,它可以避免有限时间反步框架中的奇异性问题。此外,证明了闭环控制系统中的所有信号都能在有限时间内收敛。最后,给出了仿真结果以说明所提出控制方案的有效性。