Suppr超能文献

通过普鲁士蓝作为桥梁将 II 型 FeO@聚吡咯转化为 Z 型 FeO@聚吡咯/普鲁士蓝:在光芬顿反应中增强活性和机理洞察。

Transforming type-II FeO@polypyrrole to Z-scheme FeO@polypyrrole/Prussian blue via Prussian blue as bridge: Enhanced activity in photo-Fenton reaction and mechanism insight.

机构信息

School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, China.

出版信息

J Hazard Mater. 2021 Mar 5;405:124668. doi: 10.1016/j.jhazmat.2020.124668. Epub 2020 Nov 26.

Abstract

Photo-Fenton reaction is a more effective technique for pollutant disposal than photocatalytic reaction. Herein, FeO@polypyrrole/Prussian blue (FeO@PPy/PB) with a hierarchical porous structure was prepared by a reactive-template method. After transforming typical type-II FeO@PPy to Z-scheme FeO@PPy/PB via PB as a bridge, the degradation rate was increased by 1.4 times in photocatalytic reaction and 4.0 times in photo-Fenton reaction due to higher visible-light harvest, enhanced separation efficiency of photoinduced charges, lower interface resistance, and especially well-preserved redox potentials of holes and electrons. Mechanism studies revealed that holes were quenched by HO, and this led to O generation and efficient separation of electrons. Meanwhile, O was reduced by separated electrons, and this further increased O yield. Therefore, the main radicals changed from hole in photocatalytic reaction to O in the photo-Fenton reaction, leading to an increase as high as 12.1-fold enhancement in the degradation rate. Conversely, only HO participated into photocatalytic reaction using FeO@PPy while O was absent, resulting in merely 4.2-fold improvement. This manuscript gives a comprehensive understanding on mechanisms of type-II and Z-scheme heterojunctions in both photocatalytic and photo-Fenton reactions. Obviously, the outcomes are beneficial for designing catalysts with high photo-Fenton activity.

摘要

光芬顿反应是一种比光催化反应更有效的污染物处理技术。在此,通过反应模板法制备了具有分级多孔结构的 FeO@聚吡咯/普鲁士蓝(FeO@PPy/PB)。通过 PB 作为桥梁将典型的 II 型 FeO@PPy 转化为 Z 型 FeO@PPy/PB 后,光催化反应和光芬顿反应的降解速率分别提高了 1.4 倍和 4.0 倍,这是由于更高的可见光捕获、增强的光生载流子分离效率、更低的界面电阻以及孔和电子的还原电位得到了更好的保留。机理研究表明,空穴被 HO 猝灭,导致 O 的生成和电子的有效分离。同时,O 被分离的电子还原,这进一步增加了 O 的产量。因此,主要的自由基从光催化反应中的空穴变为光芬顿反应中的 O,导致降解速率提高了高达 12.1 倍。相反,仅使用 FeO@PPy 进行光催化反应时,HO 参与反应,而 O 不存在,导致仅提高了 4.2 倍。本文全面了解了 II 型和 Z 型异质结在光催化和光芬顿反应中的作用机制。显然,这些结果有利于设计具有高光芬顿活性的催化剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验