Suppr超能文献

前额叶、听觉和基底外侧杏仁皮质区听觉决策的相关性。

Correlates of Auditory Decision-Making in Prefrontal, Auditory, and Basal Lateral Amygdala Cortical Areas.

机构信息

Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-4415.

Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-4415

出版信息

J Neurosci. 2021 Feb 10;41(6):1301-1316. doi: 10.1523/JNEUROSCI.2217-20.2020. Epub 2020 Dec 10.

Abstract

Spatial selective listening and auditory choice underlie important processes including attending to a speaker at a cocktail party and knowing how (or whether) to respond. To examine task encoding and the relative timing of potential neural substrates underlying these behaviors, we developed a spatial selective detection paradigm for monkeys, and recorded activity in primary auditory cortex (AC), dorsolateral prefrontal cortex (dlPFC), and the basolateral amygdala (BLA). A comparison of neural responses among these three areas showed that, as expected, AC encoded the side of the cue and target characteristics before dlPFC and BLA. Interestingly, AC also encoded the choice of the monkey before dlPFC and around the time of BLA. Generally, BLA showed weak responses to all task features except the choice. Decoding analyses suggested that errors followed from a failure to encode the target stimulus in both AC and dlPFC, but again, these differences arose earlier in AC. The similarities between AC and dlPFC responses were abolished during passive sensory stimulation with identical trial conditions, suggesting that the robust sensory encoding in dlPFC is contextually gated. Thus, counter to a strictly PFC-driven decision process, in this spatial selective listening task AC neural activity represents the sensory and decision information before dlPFC. Unlike in the visual domain, in this auditory task, the BLA does not appear to be robustly involved in selective spatial processing. We examined neural correlates of an auditory spatial selective listening task by recording single-neuron activity in behaving monkeys from the amygdala, dorsolateral prefrontal cortex, and auditory cortex. We found that auditory cortex coded spatial cues and choice-related activity before dorsolateral prefrontal cortex or the amygdala. Auditory cortex also had robust delay period activity. Therefore, we found that auditory cortex could support the neural computations that underlie the behavioral processes in the task.

摘要

空间选择性聆听和听觉选择是鸡尾酒会中注意到说话者并知道如何(或是否)做出反应等重要过程的基础。为了研究任务编码以及这些行为潜在神经基质的相对时间,我们为猴子开发了一种空间选择性检测范式,并记录了初级听觉皮层(AC)、背外侧前额叶皮层(dlPFC)和基底外侧杏仁核(BLA)的活动。对这三个区域的神经反应进行比较表明,如预期的那样,AC 在 dlPFC 和 BLA 之前编码了线索和目标特征的侧面。有趣的是,AC 甚至在 dlPFC 之前和 BLA 周围的时间编码了猴子的选择。通常,BLA 对所有任务特征的反应都很弱,除了选择。解码分析表明,错误是由于在 AC 和 dlPFC 中都无法编码目标刺激而导致的,但同样,这些差异在 AC 中更早出现。在具有相同试验条件的被动感觉刺激期间,AC 和 dlPFC 之间的反应相似性被消除,这表明 dlPFC 中的强大感觉编码受到上下文的限制。因此,与严格的 PFC 驱动的决策过程相反,在这个空间选择性聆听任务中,AC 神经活动在 dlPFC 之前代表感觉和决策信息。与视觉领域不同,在这个听觉任务中,BLA 似乎并没有强烈参与选择性空间处理。我们通过在行为猴子中记录杏仁核、背外侧前额叶皮层和听觉皮层的单个神经元活动,研究了听觉空间选择性聆听任务的神经相关物。我们发现,听觉皮层在背外侧前额叶皮层或杏仁核之前编码空间线索和与选择相关的活动。听觉皮层也有强大的延迟期活动。因此,我们发现听觉皮层可以支持该任务中行为过程的神经计算。

相似文献

1
Correlates of Auditory Decision-Making in Prefrontal, Auditory, and Basal Lateral Amygdala Cortical Areas.
J Neurosci. 2021 Feb 10;41(6):1301-1316. doi: 10.1523/JNEUROSCI.2217-20.2020. Epub 2020 Dec 10.
2
3
Roles of Prefrontal Cortex and Mediodorsal Thalamus in Task Engagement and Behavioral Flexibility.
J Neurosci. 2018 Mar 7;38(10):2569-2578. doi: 10.1523/JNEUROSCI.1728-17.2018. Epub 2018 Feb 7.
4
Coherent Activity between the Prelimbic and Auditory Cortex in the Slow-Gamma Band Underlies Fear Discrimination.
J Neurosci. 2018 Sep 26;38(39):8313-8328. doi: 10.1523/JNEUROSCI.0540-18.2018. Epub 2018 Aug 9.
5
The Medial Orbitofrontal Cortex-Basolateral Amygdala Circuit Regulates the Influence of Reward Cues on Adaptive Behavior and Choice.
J Neurosci. 2021 Aug 25;41(34):7267-7277. doi: 10.1523/JNEUROSCI.0901-21.2021. Epub 2021 Jul 16.
6
Choice-related activity and neural encoding in primary auditory cortex and lateral belt during feature-selective attention.
J Neurophysiol. 2021 May 1;125(5):1920-1937. doi: 10.1152/jn.00406.2020. Epub 2021 Mar 31.

引用本文的文献

4
A robust and compact population code for competing sounds in auditory cortex.
J Neurophysiol. 2023 Sep 1;130(3):775-787. doi: 10.1152/jn.00148.2023. Epub 2023 Aug 30.
5
Functional network properties of the auditory cortex.
Hear Res. 2023 Jun;433:108768. doi: 10.1016/j.heares.2023.108768. Epub 2023 Apr 12.
6
Pruning recurrent neural networks replicates adolescent changes in working memory and reinforcement learning.
Proc Natl Acad Sci U S A. 2022 May 31;119(22):e2121331119. doi: 10.1073/pnas.2121331119. Epub 2022 May 27.

本文引用的文献

1
Representation of Auditory Task Components and of Their Relationships in Primate Auditory Cortex.
Front Neurosci. 2020 Apr 21;14:306. doi: 10.3389/fnins.2020.00306. eCollection 2020.
2
Dimensionality, information and learning in prefrontal cortex.
PLoS Comput Biol. 2020 Apr 24;16(4):e1007514. doi: 10.1371/journal.pcbi.1007514. eCollection 2020 Apr.
3
Dynamics and Hierarchical Encoding of Non-compact Acoustic Categories in Auditory and Frontal Cortex.
Curr Biol. 2020 May 4;30(9):1649-1663.e5. doi: 10.1016/j.cub.2020.02.047. Epub 2020 Mar 26.
4
Primate Orbitofrontal Cortex Codes Information Relevant for Managing Explore-Exploit Tradeoffs.
J Neurosci. 2020 Mar 18;40(12):2553-2561. doi: 10.1523/JNEUROSCI.2355-19.2020. Epub 2020 Feb 14.
5
Causal links between parietal alpha activity and spatial auditory attention.
Elife. 2019 Nov 29;8:e51184. doi: 10.7554/eLife.51184.
6
Topographic specificity of alpha power during auditory spatial attention.
Neuroimage. 2020 Feb 15;207:116360. doi: 10.1016/j.neuroimage.2019.116360. Epub 2019 Nov 21.
7
Hierarchical Encoding of Attended Auditory Objects in Multi-talker Speech Perception.
Neuron. 2019 Dec 18;104(6):1195-1209.e3. doi: 10.1016/j.neuron.2019.09.007. Epub 2019 Oct 21.
8
Subcortical Substrates of Explore-Exploit Decisions in Primates.
Neuron. 2019 Aug 7;103(3):533-545.e5. doi: 10.1016/j.neuron.2019.05.017. Epub 2019 Jun 10.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验