Pastor-Satorras Romualdo, Castellano Claudio
Departament de Física, Universitat Politècnica de Catalunya, Campus Nord B4, 08034, Barcelona, Spain.
Istituto dei Sistemi Complessi (ISC-CNR), Via dei Taurini 19, 00185, Roma, Italy.
Sci Rep. 2020 Dec 10;10(1):21639. doi: 10.1038/s41598-020-78582-x.
The spectrum of the non-backtracking matrix plays a crucial role in determining various structural and dynamical properties of networked systems, ranging from the threshold in bond percolation and non-recurrent epidemic processes, to community structure, to node importance. Here we calculate the largest eigenvalue of the non-backtracking matrix and the associated non-backtracking centrality for uncorrelated random networks, finding expressions in excellent agreement with numerical results. We show however that the same formulas do not work well for many real-world networks. We identify the mechanism responsible for this violation in the localization of the non-backtracking centrality on network subgraphs whose formation is highly unlikely in uncorrelated networks, but rather common in real-world structures. Exploiting this knowledge we present an heuristic generalized formula for the largest eigenvalue, which is remarkably accurate for all networks of a large empirical dataset. We show that this newly uncovered localization phenomenon allows to understand the failure of the message-passing prediction for the percolation threshold in many real-world structures.
非回溯矩阵的谱在确定网络系统的各种结构和动力学特性方面起着关键作用,这些特性涵盖从键渗流和非递归传播过程中的阈值,到社区结构,再到节点重要性等方面。在此,我们计算了不相关随机网络的非回溯矩阵的最大特征值以及相关的非回溯中心性,得到的表达式与数值结果高度吻合。然而,我们发现相同的公式对许多现实世界的网络并不适用。我们确定了导致这种不适用情况的机制,即非回溯中心性在网络子图上的局部化,这种子图的形成在不相关网络中极不可能出现,但在现实世界结构中却相当常见。利用这一知识,我们提出了一个关于最大特征值的启发式通用公式,该公式对于一个大型实证数据集中的所有网络都具有显著的准确性。我们表明,这种新发现的局部化现象有助于理解在许多现实世界结构中消息传递预测对于渗流阈值的失效情况。