Suppr超能文献

网络中特征向量定位的不同类型。

Distinct types of eigenvector localization in networks.

作者信息

Pastor-Satorras Romualdo, Castellano Claudio

机构信息

Departament de Física, Universitat Politècnica de Catalunya, Campus Nord B4, 08034 Barcelona, Spain.

Istituto dei Sistemi Complessi (ISC-CNR), Via dei Taurini 19, I-00185 Roma, Italy.

出版信息

Sci Rep. 2016 Jan 12;6:18847. doi: 10.1038/srep18847.

Abstract

The spectral properties of the adjacency matrix provide a trove of information about the structure and function of complex networks. In particular, the largest eigenvalue and its associated principal eigenvector are crucial in the understanding of nodes' centrality and the unfolding of dynamical processes. Here we show that two distinct types of localization of the principal eigenvector may occur in heterogeneous networks. For synthetic networks with degree distribution P(q) ~ q(-γ), localization occurs on the largest hub if γ > 5/2; for γ < 5/2 a new type of localization arises on a mesoscopic subgraph associated with the shell with the largest index in the K-core decomposition. Similar evidence for the existence of distinct localization modes is found in the analysis of real-world networks. Our results open a new perspective on dynamical processes on networks and on a recently proposed alternative measure of node centrality based on the non-backtracking matrix.

摘要

邻接矩阵的谱特性提供了有关复杂网络结构和功能的丰富信息。特别是,最大特征值及其相关的主特征向量对于理解节点的中心性和动态过程的展开至关重要。在这里,我们表明主特征向量可能在异质网络中出现两种不同类型的局部化。对于度分布为P(q) ~ q^(-γ)的合成网络,如果γ > 5/2,局部化发生在最大的枢纽节点上;对于γ < 5/2,一种新型的局部化出现在与K核分解中最大索引壳相关的介观子图上。在对真实世界网络的分析中也发现了不同局部化模式存在的类似证据。我们的结果为网络上的动态过程以及最近提出的基于非回溯矩阵的节点中心性替代度量开辟了新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffd3/4709588/168ee827f09d/srep18847-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验