Suppr超能文献

胺碘酮通过改善心肌力学特性抑制高血压大鼠心律失常。

Amiodarone inhibits arrhythmias in hypertensive rats by improving myocardial biomechanical properties.

机构信息

Emergency Department, Peking University People's Hospital, Beijing, 100044, People's Republic of China.

CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China.

出版信息

Sci Rep. 2020 Dec 10;10(1):21656. doi: 10.1038/s41598-020-78677-5.

Abstract

The prevalence of arrhythmia in patients with hypertension has gradually attracted widespread attention. However, the relationship between hypertension and arrhythmia still lacks more attention. Herein, we explore the biomechanical mechanism of arrhythmia in hypertensive rats and the effect of amiodarone on biomechanical properties. We applied micro-mechanics and amiodarone to stimulate single ventricular myocytes to compare changes of mechanical parameters and the mechanism was investigated in biomechanics. Then we verified the expression changes of genes and long non-coding RNAs (lncRNAs) related to myocardial mechanics to explore the effect of amiodarone on biomechanical properties. The results found that the stiffness of ventricular myocytes and calcium ion levels in hypertensive rats were significantly increased and amiodarone could alleviate the intracellular calcium response and biomechanical stimulation. In addition, experiments showed spontaneously hypertensive rats were more likely to induce arrhythmia and preoperative amiodarone intervention significantly reduced the occurrence of arrhythmias. Meanwhile, high-throughput sequencing showed the genes and lncRNAs related to myocardial mechanics changed significantly in the spontaneously hypertensive rats that amiodarone was injected. These results strengthen the evidence that hypertension rats are prone to arrhythmia with abnormal myocardial biomechanical properties. Amiodarone effectively inhibit arrhythmia by improving the myocardial biomechanical properties and weakening the sensitivity of mechanical stretch stimulation.

摘要

高血压患者心律失常的患病率逐渐引起广泛关注。然而,高血压与心律失常之间的关系仍缺乏更多关注。在此,我们探讨了高血压大鼠心律失常的生物力学机制以及胺碘酮对生物力学特性的影响。我们应用微力学和胺碘酮刺激单个心室肌细胞,比较力学参数的变化,并从生物力学角度探讨其机制。然后,我们验证了与心肌力学相关的基因和长链非编码 RNA(lncRNA)的表达变化,以探讨胺碘酮对生物力学特性的影响。结果发现,高血压大鼠心室肌细胞的硬度和钙离子水平显著升高,胺碘酮可减轻细胞内钙离子反应和生物力学刺激。此外,实验表明自发性高血压大鼠更容易引发心律失常,术前胺碘酮干预可显著减少心律失常的发生。同时,高通量测序显示,注射胺碘酮的自发性高血压大鼠心肌力学相关的基因和 lncRNA 发生明显改变。这些结果进一步证实了高血压大鼠心律失常与心肌生物力学特性异常有关。胺碘酮通过改善心肌生物力学特性和减弱机械拉伸刺激的敏感性,有效抑制心律失常。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2822/7730129/b5897ba1539b/41598_2020_78677_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验