Suppr超能文献

机器学习揭示创伤后应激障碍症状轨迹的隐藏风险组合。

Machine learning to reveal hidden risk combinations for the trajectory of posttraumatic stress disorder symptoms.

机构信息

Graduate School of Medicine, Tohoku University, Sendai, 980-0872, Japan.

Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan.

出版信息

Sci Rep. 2020 Dec 10;10(1):21726. doi: 10.1038/s41598-020-78966-z.

Abstract

The nature of the recovery process of posttraumatic stress disorder (PTSD) symptoms is multifactorial. The Massive Parallel Limitless-Arity Multiple-testing Procedure (MP-LAMP), which was developed to detect significant combinational risk factors comprehensively, was utilized to reveal hidden combinational risk factors to explain the long-term trajectory of the PTSD symptoms. In 624 population-based subjects severely affected by the Great East Japan Earthquake, 61 potential risk factors encompassing sociodemographics, lifestyle, and traumatic experiences were analyzed by MP-LAMP regarding combinational associations with the trajectory of PTSD symptoms, as evaluated by the Impact of Event Scale-Revised score after eight years adjusted by the baseline score. The comprehensive combinational analysis detected 56 significant combinational risk factors, including 15 independent variables, although the conventional bivariate analysis between single risk factors and the trajectory detected no significant risk factors. The strongest association was observed with the combination of short resting time, short walking time, unemployment, and evacuation without preparation (adjusted P value = 2.2 × 10, and raw P value = 3.1 × 10). Although short resting time had no association with the poor trajectory, it had a significant interaction with short walking time (P value = 1.2 × 10), which was further strengthened by the other two components (P value = 9.7 × 10). Likewise, components that were not associated with a poor trajectory in bivariate analysis were included in every observed significant risk combination due to their interactions with other components. Comprehensive combination detection by MP-LAMP is essential for explaining multifactorial psychiatric symptoms by revealing the hidden combinations of risk factors.

摘要

创伤后应激障碍(PTSD)症状的恢复过程性质是多因素的。为了全面检测显著的组合风险因素,开发了大规模并行无限多样性多测试程序(MP-LAMP),以揭示隐藏的组合风险因素,从而解释 PTSD 症状的长期轨迹。在受东日本大地震严重影响的 624 名基于人群的受试者中,利用 MP-LAMP 分析了 61 种潜在的风险因素,包括社会人口统计学、生活方式和创伤经历,这些因素与 PTSD 症状的轨迹有关,通过修正后的事件影响量表(IES-R)评分评估,八年的时间跨度,并调整了基线评分。全面的组合分析检测到 56 个显著的组合风险因素,包括 15 个独立变量,尽管传统的单因素分析与轨迹之间没有检测到显著的风险因素。最强的关联是与短休息时间、短步行时间、失业和无准备疏散相结合(调整后的 P 值=2.2×10,原始 P 值=3.1×10)。尽管短休息时间与不良轨迹没有关联,但它与短步行时间有显著的交互作用(P 值=1.2×10),这进一步被其他两个因素强化(P 值=9.7×10)。同样,在二元分析中与不良轨迹无关的组成部分,由于与其他组成部分的相互作用,也包含在每个观察到的显著风险组合中。MP-LAMP 的全面组合检测对于通过揭示风险因素的隐藏组合来解释多因素精神症状是必要的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdb6/7730124/60bf92c91b9e/41598_2020_78966_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验