Am J Epidemiol. 2021 Jun 1;190(6):1113-1121. doi: 10.1093/aje/kwaa264.
Michigan experienced a significant measles outbreak in 2019 amidst rising rates of nonmedical vaccine exemptions (NMEs) and low vaccination coverage compared with the rest of the United States. There is a critical need to better understand the landscape of nonvaccination in Michigan to assess the risk of vaccine-preventable disease outbreaks in the state, yet there is no agreed-upon best practice for characterizing spatial clustering of nonvaccination, and numerous clustering metrics are available in the statistical, geographical, and epidemiologic literature. We used school-level data to characterize the spatiotemporal landscape of vaccine exemptions in Michigan for the period 2008-2018 using Moran's I, the isolation index, the modified aggregation index, and the Theil index at 4 spatial scales. We also used nonvaccination thresholds of 5%, 10%, and 20% to assess the bias incurred when aggregating vaccination data. We found that aggregating school-level data to levels commonly used for public reporting can lead to large biases in identifying the number and location of at-risk students and that different clustering metrics yielded variable interpretations of the nonvaccination landscape in Michigan. This study shows the importance of choosing clustering metrics with their mechanistic interpretations in mind, be it large- or fine-scale heterogeneity or between- and within-group contributions to spatial variation.
密歇根州在 2019 年爆发了大规模麻疹疫情,而该州的非医学疫苗豁免率(NME)不断上升,疫苗接种率却低于美国其他地区。现在迫切需要更好地了解密歇根州的非接种情况,以评估该州疫苗可预防疾病爆发的风险,但目前还没有公认的最佳实践方法来描述非接种的空间聚类,而且在统计学、地理学和流行病学文献中有许多聚类指标。我们使用学校层面的数据,使用 Moran's I、隔离指数、修正聚集指数和 Theil 指数在 4 个空间尺度上描述了 2008-2018 年密歇根州疫苗豁免的时空分布情况。我们还使用了非接种率阈值为 5%、10%和 20%,以评估在汇总接种数据时产生的偏差。我们发现,将学校层面的数据汇总到通常用于公共报告的水平上,可能会导致识别高危学生的数量和位置时出现较大偏差,而且不同的聚类指标对密歇根州的非接种情况产生了不同的解释。本研究表明,在选择聚类指标时,考虑其机制解释非常重要,无论是大尺度还是小尺度的异质性,还是组间和组内对空间变化的贡献。