Suppr超能文献

基于拉曼光谱结合DOSC-SPA-PLSR-DS模型快速检测绵羊血清中的七种指标。

Rapid detection of seven indexes in sheep serum based on Raman spectroscopy combined with DOSC-SPA-PLSR-DS model.

作者信息

Chen Fangfang, Chen Chen, Li Wenrong, Xiao Meng, Yang Bo, Yan Ziwei, Gao Rui, Zhang Shuailei, Han Huijie, Chen Cheng, Lv Xiaoyi

机构信息

College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China.

Key Laboratory of Genetics, Breeding & Reproduction of Grass-Feeding Livestock, Ministry of Agriculture, Urumqi 830000, China; Key Laboratory of Animal Biotechnology of Xinjiang Institute of Animal Biotechnology, Xinjiang Academy of Animal Science, Urumqi 830000, China.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2021 Mar 5;248:119260. doi: 10.1016/j.saa.2020.119260. Epub 2020 Nov 28.

Abstract

Hepatic fascioliasis, ketosis of pregnancy, toxemia of pregnancy and other common sheep diseases will directly affect the concentration (/enzymatic activity) of seven indicators, such as cortisol and high-density lipoprotein cholesterol (HDL-C) in sheep serum. Whether the concentrations (/enzymatic activity) of these indicators can be detected quickly will directly affect the prevention of sheep diseases and the targeted adjustment of breeding methods, thereby affecting the economic benefits of sheep breeding. In this research, we established partial least square regression (PLSR), support vector regression based on genetic algorithm optimization (GA-SVR) and extreme learning machine (ELM) models. Due to the large differences in the content of different substances, it is difficult to directly use the RMSE to evaluate the quantitative effect of the model. This study is the first to propose conducting deviation standardization (DS) for the determination results of various substances. To further improve the performance of the model, we use the successive projections algorithm (SPA) to optimize feature extraction and combine it with the better-performing PLSR model for training. The results show that the optimized DOSC-SPA-PLSR-DS quantitative model has better determination results for 101 sheep serum samples. The average RMSE of the concentration of the six substances decreased from 0.0408 to 0.0387, the R increased from 0.9758 to 0.9846, and the running time was reduced from 0.1659 to 0.0008 s. And the determination performance of lipase (LPS) enzymatic activity has also been improved. The results of this research show that sheep serum Raman spectroscopy combined with DOSC-SPA-PLSR-DS optimization can efficiently monitor the concentration (/enzyme activity) of seven indicators in real time and provide a new strategy for future intelligent supervision of animal husbandry.

摘要

肝片吸虫病、妊娠酮血症、妊娠毒血症及其他常见的绵羊疾病会直接影响绵羊血清中皮质醇和高密度脂蛋白胆固醇(HDL-C)等七种指标的浓度(/酶活性)。这些指标浓度(/酶活性)能否快速检测出来,将直接影响绵羊疾病的预防以及养殖方式的针对性调整,进而影响绵羊养殖的经济效益。在本研究中,我们建立了偏最小二乘回归(PLSR)、基于遗传算法优化的支持向量回归(GA-SVR)和极限学习机(ELM)模型。由于不同物质的含量差异较大,难以直接用均方根误差(RMSE)来评估模型的定量效果。本研究首次提出对各种物质的测定结果进行偏差标准化(DS)。为进一步提高模型性能,我们使用连续投影算法(SPA)优化特征提取,并将其与性能较好的PLSR模型相结合进行训练。结果表明,优化后的DOSC-SPA-PLSR-DS定量模型对101份绵羊血清样本具有更好的测定结果。六种物质浓度的平均RMSE从0.0408降至0.0387,R从0.9758增至0.9846,运行时间从0.1659秒降至0.0008秒。脂肪酶(LPS)酶活性的测定性能也得到了提高。本研究结果表明,绵羊血清拉曼光谱结合DOSC-SPA-PLSR-DS优化能够实时高效地监测七种指标的浓度(/酶活性),为未来畜牧业的智能监管提供了新策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验