Suppr超能文献

利用拉曼光谱和人工神经网络定量检测体内糖化血红蛋白和葡萄糖。

Quantification of glycated hemoglobin and glucose in vivo using Raman spectroscopy and artificial neural networks.

机构信息

Optics Coordination, National Institute of Astrophysics, Optics and Electronics (INAOE), 72840, Puebla, Mexico.

Computer Science Coordination, National Institute of Astrophysics, Optics and Electronics (INAOE), 72840, Puebla, Mexico.

出版信息

Lasers Med Sci. 2022 Dec;37(9):3537-3549. doi: 10.1007/s10103-022-03633-w. Epub 2022 Sep 5.

Abstract

Undiagnosed type 2 diabetes (T2D) remains a major public health concern. The global estimation of undiagnosed diabetes is about 46%, being this situation more critical in developing countries. Therefore, we proposed a non-invasive method to quantify glycated hemoglobin (HbA1c) and glucose in vivo. We developed a technique based on Raman spectroscopy, RReliefF as a feature selection method, and regression based on feed-forward artificial neural networks (FFNN). The spectra were obtained from the forearm, wrist, and index finger of 46 individuals. The use of FFNN allowed us to achieve an error in the predictive model of 0.69% for HbA1c and 30.12 mg/dL for glucose. Patients were classified according to HbA1c values into three categories: healthy, prediabetes, and T2D. The proposed method obtained a specificity and sensitivity of 87.50% and 80.77%, respectively. This work demonstrates the benefit of using artificial neural networks and feature selection techniques to enhance Raman spectra processing to determine glycated hemoglobin and glucose in patients with undiagnosed T2D.

摘要

未诊断的 2 型糖尿病(T2D)仍然是一个主要的公共卫生关注点。全球约有 46%的糖尿病未被诊断,发展中国家的情况更为严重。因此,我们提出了一种非侵入性的方法来定量体内糖化血红蛋白(HbA1c)和葡萄糖。我们开发了一种基于拉曼光谱的技术,使用 ReliefF 作为特征选择方法,并基于前馈人工神经网络(FFNN)进行回归。从 46 个人的前臂、手腕和食指获得了光谱。FFNN 的使用使我们能够实现 HbA1c 预测模型的误差为 0.69%,葡萄糖的误差为 30.12 mg/dL。根据 HbA1c 值,患者被分为三组:健康、糖尿病前期和 T2D。所提出的方法的特异性和灵敏度分别为 87.50%和 80.77%。这项工作证明了使用人工神经网络和特征选择技术来增强拉曼光谱处理以确定未诊断 T2D 患者的糖化血红蛋白和葡萄糖的益处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd5b/9708775/abb280629b9c/10103_2022_3633_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验