Suppr超能文献

双眼总和与有效编码。

Binocular summation and efficient coding.

机构信息

McGill Vision Research, Department of Ophthalmology, Montréal General Hospital, 1650 Cedar Ave., Rm. L11.520, Montréal, PQ H3G 1A4, Canada.

McGill Vision Research, Department of Ophthalmology, Montréal General Hospital, 1650 Cedar Ave., Rm. L11.520, Montréal, PQ H3G 1A4, Canada.

出版信息

Vision Res. 2021 Feb;179:53-63. doi: 10.1016/j.visres.2020.11.007. Epub 2020 Dec 8.

Abstract

Two eyes are better than one at detecting a pattern, an advantage termed binocular summation. It is widely believed that binocular summation is mediated by neurons that sum the two eyes' inputs. Here we suggest an alternative model based on a model of binocular interactions proposed by Cohn, Leong & Lasley (Vision Research, 1981, 21, 1017-1023) and further motivated by the efficient coding framework proposed by Li & Atick (Network: Computation in Neural Systems, 1994, 5, 157-174). In the model, termed MAX(S+S-), binocular summation is mediated by channels that compute the sum, S+, and difference, S-, of the two eyes' monocular signals. The S+ and S- signals are assumed to be perturbed by independent noise, have independent gains and contribute independently to detection via the MAX rule. To test the model we measured binocular summation for horizontally-oriented Gabor patches at a range of spatial-frequencies and bandwidths, at both contrast detection threshold and for increment thresholds on binocular pedestals at contrasts set to 10x detection threshold. The model's performance was compared to that of two conventional models of binocular summation, one in which the two eyes' signals remain separate at the decision stage, termed MAX(LR), the other in which the two eye's signals are summed by a single channel, termed B+, with both models incorporating interocular inhibition. The MAX(S+S-) model gave as good a performance as the other two models. Together with the evidence for the involvement of separately gain controlled S+ and S- signals underpinning a wide range of binocular behaviors, we conclude that the MAX(S+S-) model can and should be considered as a viable model for binocular summation.

摘要

两只眼睛比一只眼睛更能检测到模式,这种优势称为双眼总和。人们普遍认为,双眼总和是通过对两只眼睛输入进行求和的神经元来介导的。在这里,我们基于 Cohn、Leong 和 Lasley(视觉研究,1981,21,1017-1023)提出的双眼相互作用模型以及 Li 和 Atick(神经网络:计算神经系统,1994,5,157-174)提出的有效编码框架提出了一个替代模型。在该模型中,称为 MAX(S+S-),双眼总和是通过计算两只眼睛的单眼信号之和 S+和差 S-的通道来介导的。假设 S+和 S-信号受到独立噪声的干扰,具有独立的增益,并通过 MAX 规则独立地有助于检测。为了测试该模型,我们在一系列空间频率和带宽下测量了水平取向的 Gabor 补丁的双眼总和,在对比度检测阈值和对比度设置为 10x 检测阈值的双眼基底上的增量阈值下进行测量。将该模型的性能与两种传统的双眼总和模型进行了比较,一种是在决策阶段两个眼睛的信号保持独立的模型,称为 MAX(LR),另一种是两个眼睛的信号由单个通道相加的模型,称为 B+,这两种模型都包含了眼间抑制。MAX(S+S-)模型的性能与其他两种模型一样好。结合广泛的双眼行为中涉及单独增益控制的 S+和 S-信号的证据,我们得出结论,MAX(S+S-)模型可以并且应该被认为是一种可行的双眼总和模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验