Division of Biochemical Toxicology, National Center for Toxicological Research/ U.S. FDA, Jefferson, AR, 72079, USA.
Biology Department, State University of New York at New Paltz, New Paltz, NY, 12561, USA.
Chem Biol Interact. 2021 Jan 25;334:109353. doi: 10.1016/j.cbi.2020.109353. Epub 2020 Dec 9.
Perhexiline is a coronary vasodilator for angina treatment that was first developed in the 1960s. Perhexiline enjoyed worldwide success before reports of severe side effects, such as hepatotoxicity and neurotoxicity, caused its withdrawal from most of the markets. The underlying mechanism of the cytotoxicity of perhexiline, however, is not yet well understood. Here we demonstrated that perhexiline induced cellular damage in primary human hepatocytes, HepaRG cells and HepG2 cells. Analysis of gene and protein expression levels of endoplasmic reticulum (ER) stress markers showed that perhexiline caused ER stress in primary human hepatocytes and HepG2 cells. The splicing of XBP1 mRNA, a hallmark of ER stress, was observed upon perhexiline treatment. Using Gluc-Fluc-HepG2 cell line, we demonstrated that protein secretion was impaired upon perhexiline treatment, suggesting functional deficits in ER. Inhibition of ER stress using ER inhibitor 4-PBA or salubrinal attenuated the cytotoxicity of perhexiline. Directly knocking down ATF4 using siRNA also partially rescued HepG2 cells upon perhexiline exposure. In addition, inhibition of ER stress using either inhibitors or siRNA transfection attenuated perhexiline-induced increase in caspase 3/7 activity, indicating that ER stress contributed to perhexiline-induced apoptosis. Moreover, perhexiline treatment resulted in activation of p38 and JNK signaling pathways, two branches of MAPK cascade. Pre-treating HepG2 cells with p38 inhibitor SB239063 attenuated perhexiline-induced apoptosis and cell death. The inhibitor also prevented the activation of CHOP and ATF4. Overall, our study demonstrated that ER stress is one important mechanism underlying the hepatotoxicity of perhexiline, and p38 signaling pathway contributes to this process. Our finding shed light on the role of both ER stress and p38 signaling pathway in drug-induced liver injury.
哌克昔林是一种用于治疗心绞痛的冠状动脉扩张剂,于 20 世纪 60 年代首次开发。哌克昔林在引起肝毒性和神经毒性等严重副作用的报道出现之前,曾在全球范围内取得成功,随后该药从大多数市场撤出。然而,哌克昔林细胞毒性的潜在机制尚不清楚。在这里,我们证明哌克昔林在原代人肝细胞、HepaRG 细胞和 HepG2 细胞中诱导细胞损伤。内质网(ER)应激标志物的基因和蛋白表达水平分析表明,哌克昔林引起原代人肝细胞和 HepG2 细胞 ER 应激。PERK 剪接酶(XBP1mRNA 的剪接酶)的切割,这是 ER 应激的一个标志,在哌克昔林处理后观察到。使用 Gluc-Fluc-HepG2 细胞系,我们证明蛋白分泌在哌克昔林处理后受损,表明 ER 功能缺陷。使用 ER 抑制剂 4-PBA 或 salubrinal 抑制 ER 应激可减轻哌克昔林的细胞毒性。使用 siRNA 直接敲低 ATF4 也部分挽救了哌克昔林暴露后的 HepG2 细胞。此外,使用抑制剂或 siRNA 转染抑制 ER 应激可减弱哌克昔林诱导的 caspase 3/7 活性增加,表明 ER 应激导致哌克昔林诱导的细胞凋亡。此外,哌克昔林处理导致 p38 和 JNK 信号通路(MAPK 级联的两个分支)的激活。用 p38 抑制剂 SB239063 预处理 HepG2 细胞可减轻哌克昔林诱导的细胞凋亡和细胞死亡。该抑制剂还阻止了 CHOP 和 ATF4 的激活。总之,我们的研究表明,ER 应激是哌克昔林肝毒性的一个重要机制,p38 信号通路参与了这一过程。我们的发现揭示了 ER 应激和 p38 信号通路在药物性肝损伤中的作用。