Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5E), FI-00014 University of Helsinki, Finland.
Department of Materials Science and Engineering, School of Chemical Engineering, Aalto University, FI-02150 Espoo, Finland.
Eur J Pharm Sci. 2021 Mar 1;158:105677. doi: 10.1016/j.ejps.2020.105677. Epub 2020 Dec 10.
UDP-glucuronosyltransferases (UGTs), located in the endoplasmic reticulum of liver cells, are an important family of enzymes, responsible for the biotransformation of several endogenous and exogenous chemicals, including therapeutic drugs. However, the phenomenon of 'latency', i.e., full UGT activity revealed by disruption of the microsomal membrane, poses substantial challenges for predicting drug clearance based on in vitro glucuronidation assays. This work introduces a microfluidic reactor design comprising immobilized human liver microsomes to facilitate the study of UGT-mediated drug clearance under flow-through conditions. The performance of the microreactor is characterized using glucuronidation of 8-hydroxyquinoline (via multiple UGTs) and zidovudine (via UGT2B7) as the model reactions. With the help of alamethicin and albumin effects, we show that conducting UGT metabolism assays under flow conditions facilitates in-depth mechanistic studies, which may also shed light on UGT latency.
UDP-葡萄糖醛酸转移酶(UGTs)位于肝细胞的内质网中,是一个重要的酶家族,负责多种内源性和外源性化学物质的生物转化,包括治疗药物。然而,“潜伏”现象,即通过破坏微粒体膜来揭示完整的 UGT 活性,给基于体外葡萄糖醛酸化测定来预测药物清除率带来了巨大的挑战。本工作引入了一种包含固定化人肝微粒体的微流反应器设计,以促进在流动条件下研究 UGT 介导的药物清除。使用 8-羟基喹啉(通过多种 UGTs)和齐多夫定(通过 UGT2B7)的葡萄糖醛酸化作为模型反应来表征微反应器的性能。借助 alamethicin 和白蛋白的作用,我们表明在流动条件下进行 UGT 代谢测定有助于深入的机制研究,这也可能揭示 UGT 潜伏的机制。