Alpural Alperen, Kimiz-Gebologlu Ilgin, Parekh Mayur, Imamoglu Esra, Ali Zulfiqur, Yesil-Celiktas Ozlem
Department of Bioengineering Faculty of Engineering Ege University Izmir Türkiye.
Healthcare Innovation Centre School of Health and Life Sciences Teesside University Middlesbrough, Tees Valley UK.
Eng Life Sci. 2025 Sep 11;25(9):e70034. doi: 10.1002/elsc.70034. eCollection 2025 Sep.
Microbial bioprocessing is a key technology for the production of a wide range of biomolecules, including proteins, enzymes, antibiotics, and other bioactive compounds. In recent years, there has been an increasing interest in using microfluidic platforms for bioprocessing, due to the ability to precisely control and manipulate fluids at the microscale. Microfluidics offers a transformative platform for the manufacturing of biomolecules intended for clinical applications by addressing key technical challenges in scalability, precision, reproducibility, and the ability to study complex biological systems. In this review, various methods used to fabricate microfluidic platforms and the current state-of-the-art in the synthesis/production of biopharmaceuticals, polymers, bioactive compounds, and real-time monitoring in microscale bioprocesses are discussed. Additionally, the future trends and directions are highlighted. Overall, we envisage the utilization of microfluidic platforms to advance the field of microbial bioprocessing and applications in the biomedical field.
微生物生物加工是生产多种生物分子的关键技术,这些生物分子包括蛋白质、酶、抗生素和其他生物活性化合物。近年来,由于能够在微尺度上精确控制和操纵流体,人们对使用微流控平台进行生物加工的兴趣日益浓厚。微流控技术通过解决可扩展性、精度、可重复性以及研究复杂生物系统能力等关键技术挑战,为制造用于临床应用的生物分子提供了一个变革性平台。在这篇综述中,讨论了用于制造微流控平台的各种方法以及生物制药、聚合物、生物活性化合物合成/生产和微尺度生物过程实时监测的当前技术水平。此外,还强调了未来的趋势和方向。总体而言,我们设想利用微流控平台推动微生物生物加工领域以及在生物医学领域的应用。